

Thomas Prest (joint work w/ PQShield & friends)

April 25, 2025

Signatures

					_	
			Hash-&-Sign	Fiat-Shamir		
Easier to thresholdize	Convo	olution	Eagle [YJW23]	G+G [DPS23]		
	Rejectior	n sampling	Phoenix [JRS24]	Dilithium [LDK ⁺ 22]		More
	Noise flooding	Plover [EEN ⁺ 24]	Raccoon [dEK ⁺ 23]		compact	

PQ SHIELD

This talk: focus on Raccoon 🦝

- Masking-friendly [dPKPR24] and threshold-friendly [DKM⁺24]
- → NIST PQC candidate [dEK+23], 2023-2024 (RIP in peace </
- → Similar design also found in [ASY22, GKS24]

Raccoon: Schnorr over lattices

E Po SHIELD

Raccoon.Keygen() \rightarrow sk, vk Schnorr.Keygen() \rightarrow sk, vk **1** $vk = \begin{bmatrix} A & 1 \end{bmatrix} \cdot sk$, for sk short. • vk = g^{sk} , for sk uniform. **Raccoon.Sign**(sk, msg) \rightarrow sig Schnorr.Sign(sk, msg) \rightarrow sig Sample r 1 Sample a short r $\mathbf{O} \mathbf{w} = \begin{bmatrix} \mathbf{A} & \mathbf{1} \end{bmatrix} \cdot \mathbf{r}$ $\mathbf{2} \mathbf{w} = \mathbf{g}^{\mathsf{r}}$ $\mathbf{O} \mathbf{c} = H(\mathbf{w}, \mathbf{msg})$ $\mathbf{0} \mathbf{c} = H(\mathbf{w}, \mathsf{msg})$ 4 $z = r + c \cdot sk$ 4 $\mathbf{z} = \mathbf{r} + \mathbf{c} \cdot \mathbf{sk}$ **6** Output sig = (c, z)**6** Output sig = (c, \mathbf{z}) Schnorr.Verify(vk,msg,sig) **Raccoon.Verify**(vk,msg,sig) $\mathbf{0} \ \mathbf{w}' = \mathbf{g}^{\mathbf{z}} \cdot \mathbf{v} \mathbf{k}^{-\mathbf{c}}$ 2 Assert $H(\mathbf{w}', \mathsf{msg}) = c$ 2 Assert $H(\mathbf{w}', \mathsf{msg}) = c$ Assert z is short

Security of Raccoon

Po SHIELD

 $\textbf{Raccoon.Keygen}() \rightarrow \textbf{sk}, \textbf{vk}$

1 $vk = \begin{bmatrix} A & 1 \end{bmatrix} \cdot sk$, for sk short.

$\textbf{Raccoon.Sign}(sk, msg) \rightarrow \texttt{sig}$

\rm 6 Sample a short **r**

$$\mathbf{2} \mathbf{w} = \begin{bmatrix} \mathbf{A} & \mathbf{1} \end{bmatrix} \cdot \mathbf{r}$$

 $\mathbf{0} \mathbf{c} = H(\mathbf{w}, \mathtt{msg})$

$$\mathbf{0} \, \mathbf{z} = \mathbf{r} + \mathbf{c} \cdot \mathbf{s} \mathbf{k}$$

6 Output sig =
$$(c, \mathbf{z})$$

Raccoon.Verify(vk, msg, sig)

$$\mathbf{0} \ \mathbf{w}' = \begin{bmatrix} \mathbf{A} & \mathbf{1} \end{bmatrix} \cdot \mathbf{z} - c \cdot \mathbf{v} \mathbf{k}$$

- **2** Assert $H(\mathbf{w}', \mathsf{msg}) = c$
- 3 Assert z is short

Security: Raccoon is EUF-CMA assuming:

1 Hint-MLWE [KLSS23] (next slide)

- Implied by lack of rejection sampling
- Ensures uniformity of the public key

2 Self-target MSIS [KLS18]

> Unforgeability

Hint-MLWE?

SHIELD

(Hint-)MLWE [KLSS23]

It is difficult to distinguish both distributions:

$$\begin{split} &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_q^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \coloneqq \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \mathsf{sk} \right\} \\ &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_q^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \leftarrow \mathcal{R}_q^k \right\} \end{split}$$

In Hint-MLWE, the adversary is additionally given Q "hints" of the shape:

$$(c_i, \mathbf{z}_i \leftarrow c_i \cdot \mathbf{sk} + \mathbf{r}_i), \text{ where } c_i \leftarrow \mathcal{C}, \mathbf{r}_i \leftarrow \chi_{\mathbf{r}}$$

Hint-MLWE?

:::PQ SHIELD

(Hint-)MLWE [KLSS23]

It is difficult to distinguish both distributions:

$$\begin{split} &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_q^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \coloneqq \begin{bmatrix} \mathsf{A} & \mathsf{I} \end{bmatrix} \cdot \mathsf{sk} \right\} \\ &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_q^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \leftarrow \mathcal{R}_q^k \right\} \end{split}$$

In Hint-MLWE, the adversary is additionally given Q "hints" of the shape:

$$(c_i, \textbf{z}_i \leftarrow c_i \cdot \textbf{sk} + \textbf{r}_i), \quad \text{where } c_i \leftarrow \mathcal{C}, \textbf{r}_i \leftarrow \chi_{\textbf{r}}$$

Attack on Hint-MLWE

Assume $\forall i \in [Q], \|c_i\|^2 = \omega$. If we note $c^*(x) = c(x^{-1})$, we can recover sk by constructing this accumulator:

$$acc = \sum_{i} c_{i}^{*} \cdot \mathbf{z}_{i}$$
$$= \sum_{i} c_{i}^{*} c_{i} \cdot \mathbf{sk} + \sum_{i} c_{i}^{*} \cdot \mathbf{r}_{i}$$
$$\approx \mathbf{Q} \cdot \boldsymbol{\omega} \cdot \mathbf{sk} + \mathbf{O}(\sqrt{\mathbf{Q} \cdot \boldsymbol{\omega}} \cdot \|\mathbf{r}\|)$$

If $\|\mathbf{r}\| = o(\sqrt{Q \cdot \omega})$, rounding acc to the closest multiple of $Q \cdot \omega$ gives sk.

Hint-MLWE?

:: PQ SHIELD

(Hint-)MLWE [KLSS23]

It is difficult to distinguish both distributions:

$$\begin{split} &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_{q}^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \coloneqq \begin{bmatrix} \mathsf{A} & \mathsf{I} \end{bmatrix} \cdot \mathsf{sk} \right\} \\ &\left\{ (\mathbf{A}, \mathbf{b}) | \mathbf{A} \leftarrow \mathcal{R}_{q}^{k \times \ell}, \mathsf{sk} \leftarrow \chi_{\mathsf{sk}}, \mathbf{b} \leftarrow \mathcal{R}_{q}^{k} \right\} \end{split}$$

In Hint-MLWE, the adversary is additionally given Q "hints" of the shape:

$$(c_i, z_i \leftarrow c_i \cdot sk + r_i), \text{ where } c_i \leftarrow C, r_i \leftarrow \chi_r$$

Attack on Hint-MLWE

Assume $\forall i \in [Q], \|c_i\|^2 = \omega$. If we note $c^*(x) = c(x^{-1})$, we can recover sk by constructing this accumulator:

$$acc = \sum_{i} c_{i}^{*} \cdot \mathbf{z}_{i}$$
$$= \sum_{i} c_{i}^{*} c_{i} \cdot \mathbf{sk} + \sum_{i} c_{i}^{*} \cdot \mathbf{r}_{i}$$
$$\approx Q \cdot \omega \cdot \mathbf{sk} + O(\sqrt{Q \cdot \omega} \cdot \|\mathbf{r}\|)$$

If $\|\mathbf{r}\| = o(\sqrt{Q \cdot \omega})$, rounding acc to the closest multiple of $Q \cdot \omega$ gives sk.

Security reduction, simplified [KLSS23, DKM+24]

If **sk** and **r**_i are sampled from gaussians of standard deviation σ_{sk} and σ_{r} , then:

$$\mathsf{Hint}\mathsf{-}\mathsf{MLWE}_{\mathcal{R}_q,k,\ell,\sigma_{\mathsf{sk}},\sigma_{\mathsf{r}},\mathsf{Q}} \geq \mathsf{MLWE}_{\mathcal{R}_q,k,\ell,\sigma_0},$$

where
$$\frac{1}{\sigma_0^2} \approx 2\left(\frac{1}{\sigma_{sk}^2} + \frac{Q\cdot\omega}{\sigma_r^2}\right)$$
 (1)

Distribute trust across devices \Rightarrow Increased resilience

		Attacker: how many devices to compromise?	Attacker: how many devices to destroy?
1 device	1 key	1/1	1/1
N devices	1 key	1/N	N / N
N devices	N keys	N / N	1/N
N devices	T-out-of-N keys	T / N	(N - T + 1) / N

- The two last solutions fall under threshold cryptography
- Main focus of the NIST MPTC programme
- → Reminiscent of masking, but key differences in the attack model and properties.

Model

Communication

- Authenticated, reliable & synchronous broadcast channel
- → Each i and j may share an authenticated private channel (via AEAD)

Syntax

- One public key vk
- \rightarrow Each user *i* has a secret key share sk_i
- → Signing is an interactive protocol between |S| signers
 - > Our protocols are 3-4 rounds

$$(|\mathcal{S}| < \mathbf{T}) \Rightarrow \bot$$

 $(|\mathcal{S}| = T) \Rightarrow sig a valid signature$

Design choices

Paradigm	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	\geq 1000 KB
Lightweight	S-M	Fast	2-4	$20 \to 56 \cdot T \text{KB}$
FHE	М	As fast as FHE	2	\geq 1000 KB

Paradigm	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	\geq 1000 KB
Lightweight	S-M	Fast	2-4	$20 \rightarrow 56 \cdot T \text{KB}$
FHE	М	As fast as FHE	2	\geq 1000 KB

Paradigm	Size	Speed	Rounds	Comm/party
MPC	S	Slow	15	\geq 1000 KB
Lightweight	S-M	Fast	2-4	$20 ightarrow 56 \cdot T \text{KB}$
FHE	М	As fast as FHE	2	\geq 1000 KB

Shamir secret sharing

POC

Secret-sharing a secret $a \in \mathbb{Z}_p$:

- → Generate P(x) of degree at most T 1 such that P(0) = a
- → Each party $i \in \mathbb{Z}_p$ receives a share $a_i = P(i)$

Shamir secret sharing

(2)

Properties:

- \square With < T shares, *a* is perfectly hidden
- \blacksquare With a set S of T shares, a can be recovered via Lagrange interpolation:

$$a = \sum_{i \in S} \lambda_{i,S} \cdot a_i$$
, where $\lambda_{i,S} = \prod_{j \in S \setminus \{i\}} \frac{j}{i-j}$

Threshold Schnorr signatures

Sparkle

Each signer *i* knows a share sk_i of sk.

- Round 1:
 - Sample r_i

$$\mathbf{2} \ \mathbf{W}_i = \mathbf{g}^{\mathbf{r}_i}$$

- $om_i = H_{com}(w_i, msg, S)$
- O Broadcast com_i
- Round 2:
 - \rm Broadcast w_i
- Round 3:

→ Combine: the final signature is $(c, z = \sum_{i \in S} z_i)$

See [BN06, CKM23]

 This produces valid Schnorr signatures:

$$g^{z} = g^{\sum_{i} z_{i}}$$
$$= (g^{\sum_{i} r_{i}}) \cdot (g^{c \sum_{i} \lambda_{i,S} \cdot sk_{i}})$$
$$= w \cdot vk^{c}$$

- Security: in z_i , r_i is uniform and perfectly hides $c \cdot \lambda_{i,S} \cdot sk_i$
- Commit-then-reveal w_i to avoid ROS attacks [DEF+19, BLL+22] (we may ignore them for this talk)
- Oan we transpose this to Raccoon?

First attempt

PQ SHIELD

Insecure Threshold Raccoon

→ Round 1:

- Sample short r_i
- $\mathbf{2} \mathbf{w}_i = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \mathbf{r}_i$
- $om_i = H_{com}(\mathbf{w}_i, msg, \mathcal{S})$
- O Broadcast com_i
- Round 2:
 - 1 Broadcast w_i
- Round 3:

1
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

2 $c = H(vk, msg, \mathbf{w})$
3 $\mathbf{z}_{i} = \mathbf{r}_{i} + c \cdot \lambda_{i} \cdot sk_{i}$
4 Broadcast \mathbf{z}_{i}

→ Combine: the final signature is $(c, z = \sum_{i \in S} z_i)$

 This gives valid Raccoon signatures (up to slight parameter changes)

First attempt

PQ SHIELD

Insecure Threshold Raccoon

Round 1:

- Sample short r_i
- $\mathbf{2} \mathbf{w}_i = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \mathbf{r}_i$
- $\mathbf{O} \quad \mathsf{com}_i = H_{\mathsf{com}}(\mathbf{w}_i, \mathsf{msg}, \mathcal{S})$
- 4 Broadcast com_i
- Round 2:
 - 1 Broadcast w_i
- Round 3:

1
$$\mathbf{w} = \sum_{i} \mathbf{w}_{i}$$

2 $c = H(\mathbf{v}\mathbf{k}, \mathbf{msg}, \mathbf{w})$
3 $\mathbf{z}_{i} = \mathbf{r}_{i} + c \cdot \lambda_{i} \cdot \mathbf{sk}_{i}$

4 Broadcast z_i

→ Combine: the final signature is $(c, z = \sum_{i \in S} z_i)$

- This gives valid Raccoon signatures (up to slight parameter changes)
- 🛕 Issue: when we consider

$$\mathbf{z}_i = \mathbf{r}_i + c \cdot \lambda_i \cdot \mathbf{sk}_i,$$
 (3)

\mathbf{r}_i is small but $\mathbf{c} \cdot \boldsymbol{\lambda}_i \cdot \mathbf{s} \mathbf{k}_i$ is large.

- > Breaks the security proof
- For a fixed i, with enough z_i of the form in (3) one can recover sk_i

First attempt

PQ SHIELD

Insecure Threshold Raccoon

Round 1:

- Sample short r_i
- $\mathbf{2} \mathbf{w}_i = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \mathbf{r}_i$
- $\begin{array}{l} \textbf{O} \quad \textbf{com}_i = H_{\text{com}}(\mathbf{w}_i, \text{msg}, \mathcal{S}) \end{array}$
- O Broadcast com;
- Round 2:
 - 1 Broadcast w_i
- Round 3:

Broadcast z_i

→ Combine: the final signature is $(c, z = \sum_{i \in S} z_i)$

- This gives valid Raccoon signatures (up to slight parameter changes)
 - 💧 Issue: when we consider

$$\mathbf{z}_i = \mathbf{r}_i + c \cdot \lambda_i \cdot \mathbf{sk}_i,$$
 (3)

\mathbf{r}_i is small but $\mathbf{c} \cdot \boldsymbol{\lambda}_i \cdot \mathbf{s} \mathbf{k}_i$ is large.

- > Breaks the security proof
- For a fixed i, with enough z_i of the form in (3) one can recover sk_i
- How do we solve this?
 - **1** Add zero-share to \mathbf{z}_i [DKM+24]
 - O Use Shamir everywhere [ENP24]
 - Short secret sharings [this talk!]

Different types of secret sharings

• • ۰

Different types of secret sharings

PQSH

D

Shamir secret sharing:

$$\rightarrow$$
 Share: $x_i = P(i)$, where $P(0) = x$

 \rightarrow The shares x_i and reconstruction vector λ_S may be large

Different types of secret sharings

"Short" secret sharing: we require that:

- 1 If x is short, the shares x_i are short
- **2** The reconstruction vector $\lambda_{\mathcal{S}}$ is short

Example: *N*-out-of-*N* sharing where:

→
$$(x_i)_{1 \le i < N} \leftarrow D_{\sigma}^{N-1}$$
 and $x_N = x - \sum_{i < N} x_i$
→ $\lambda_S = (1, ..., 1)$

PQCL

Threshold Raccoon w/ short secret sharing

Threshold Raccoon, short shares

Round 1:

- 1 Sample short \mathbf{r}_i
- $\mathbf{2} \mathbf{w}_i = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} \cdot \mathbf{r}_i$
- $\underbrace{\mathbf{O}}_{i} = H_{com}(\mathbf{w}_i, \mathrm{msg}, \mathcal{S})$
- O Broadcast com_i

Round 2:

- 1 Broadcast w_i
- Round 3:

1
$$\mathbf{w} = \sum_i \mathbf{w}_i$$

2 $c = H(\mathbf{v}\mathbf{k}, \mathbf{msg}, \mathbf{w})$
3 $\mathbf{z}_i = \mathbf{r}_i + c \cdot \lambda_i \cdot \mathbf{sk}_i$

4 Broadcast z_i

→ Combine: the final signature is $(c, z = \sum_{i \in S} z_i)$

Security

→ Even if a set of shares $(sk_i)_{i \in C}$ leak:

$$\mathsf{sk}|(\mathsf{sk}_i)_{i\in\mathcal{C}} \sim \sum_{i\in\mathcal{C}} \mathsf{sk}_i + D_{\sigma\sqrt{N-|\mathcal{C}|}}$$

- ightarrow Partial signature leak nothing
 - r_i hides c · λ_i · sk_i as
 both are short
 - > We argue security via Hint-MLWE

Identifiable aborts

- → Each $vk_i = \begin{bmatrix} A & I \end{bmatrix} \cdot sk_i$ is a valid public key
- → Therefore each (c, z_i) is a valid partial signature
- → We get identifiable aborts for free!

Three secret sharings based on set theory:

Replicated secret sharing

Scales terribly

Coupon collector secret sharing

- + Scales well
- Ramp (privacy threshold < correctness threshold)

Vandermonde secret sharing

- + Scales well
- 🕂 No ramp

Replicated secret sharing

Po SHIELD

Replicated secret sharing

c We create one share s_J for each subset of $\{1, \ldots, N\}$ of size N - T + 1

- A user $u \in \{1, \ldots, N\}$ is given **s**_J if and only if $u \in J$
- > The secret is $\mathbf{s} = \sum_{J} \mathbf{s}_{J}$

 \mathbf{f} **T-correctness:** for each share \mathbf{s}_J , exactly T - 1 users do not have it

(*T* - 1)-**privacy:** for any set act of size |act| = T - 1, no member of act has the share $s_{\{1,...,N\}\setminus act}$

Figure 1: Illustration with (N, T) = (4, 3).

SHIELD

Practical considerations

- → Number of shares: $\binom{N}{N-T+1}$
- \rightarrow When signing, how do we assign shares to users? Here for act = {1,3,4}:
 - > Naive solution: assign each share s_J to $u = \min(J)$
 - Other solutions might exist (wink)

Figure 1: Illustration with (N, T) = (4, 3).

The coupon collector problem

Let $S = \{1, \ldots, n\}$. Starting at i = 1, we sample $x_i \leftarrow S$, until $\bigcup \{x_i\} = S$.

→ The number of iterations of this sampling process follows a distribution T_n.
 → The coupon collector's problem refers to the mathematical analysis of T_n.
 Fact: E[T_n] = n (¹/₁ + ¹/₂ + ··· + ¹/_n) ~ n log n.

Cumulative distribution graph of T_n for n = 100 (restricted):

Coupon collector secret sharing (CCSS)

Lemma (Adapted from [Doe18])

If $\varepsilon_{\min} = \frac{\ln C}{\ln n}$, $\varepsilon_{\max} = \frac{C}{\ln n}$, then:

$$\mathbb{P}[T_n \le T_{\min}] \le e^{-C}, \quad \text{where } T_{\min} = \max\left((1 - \varepsilon_{\min})(n-1)\ln n, n\right) \quad (4)$$
$$\mathbb{P}[T_n \ge T_{\max}] \le e^{-C}, \quad \text{where } T_{\max} = (1 + \varepsilon_{\max})n\ln n \quad (5)$$

0.

Main idea

Sample *n* shares \mathbf{s}_i , set $\mathbf{s} = \sum_i \mathbf{s}_i$

- → Each user receives a random share
- → w.o.p. a set of ≤ T_{min} users cannot recover all the shares
- → w.o.p. a set of ≥ T_{max} users can recover all the shares

Problem:
$$\frac{T_{\max}}{T_{\min}} \sim 1 + \varepsilon_{\max} + \varepsilon_{\min} \gg 1.$$

For n = 100: $(T_{\min}, \mathbb{E}[T_n], T_{\max}) = (102, 497, 9287).$

Improving the CCSS

Optimization 1

s is now shared *p* times in parallel

- Each user receives one share of each sharing
- → Allows to relax correctness

 \rightarrow We may decrease ε_{max} to $\frac{C/p}{\ln n}$

Optimization 2

Increase *n* by a factor *q*

- Now each user receives n shares (per sharing)
- → "Amplify" asymptotic behavior

Example with nq = 400 and p = 16: we have $\frac{T_{\text{max}}}{T_{\text{min}}} \sim 1 + \frac{C/p + \ln C}{\ln(nq)}$

Vandermonde's identity

For $0 \le c \le N$:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{c}{k} \cdot \binom{N-c}{T-k}$$
(6)

bistribution theory interpretation: The sum of two binomials is a binomial:

$$B(m,p) + B(n,p) \sim B(m+n,p)$$
(7)

> Eq. (6) follows from enumerating these decompositions.

Vandermonde secret sharing [DDB95] turns this into a secret sharing:

- \rightarrow Enumerating all the possible disjunctions of the form in Eq. (8)
- \rightarrow For each disjunction, share the secret in two
 - Recursively share the first half across members of act_L
 - Recursively share the second half across members of act_L

Example: 4-out-of-8

Po SHIELD

Recover with $act = \{1, 2, 3, 7\}$

SHIELD

Algorithm 1 Share($x, \mathcal{P}, T, idx = (T)$) \rightarrow Dict 1: $N = |\mathcal{P}|$ 2: if T = 1 then **return** Dict := {user : {idx : x} | user $\in \mathcal{P}$ } 3: 4: else $Dict = \{user : \{:\} \mid user \in \mathcal{P}\}, c = |N/2|$ 5: Parse $\mathcal{P} = \mathcal{P}_{l} \sqcup \mathcal{P}_{R}$, with \mathcal{P}_{l} the *c* smallest ele-6: ments of \mathcal{P} for $k = \max(0, T - N + c), \dots, \min(c, T)$ do 7: 8: $idx_l := (idx, k)$ $idx_R := (idx, T - k)$ 9: 10: if k = 0 then $Dict := Dict \cup Share(x, \mathcal{P}_R, T, idx_R)$ 11: 12: else if k = T then $Dict := Dict \cup Share(x, \mathcal{P}_{I}, T, idx_{I})$ 13: else 14: 15: $x_0 \leftarrow \chi$ $x_1 \coloneqq (x - x_0) \mod q$ 16: 17: $Dict_{l} := Share(x, \mathcal{P}_{l}, k, idx_{l})$ $Dict_{R} := Share(x, \mathcal{P}_{R}, T - k, idx_{R})$ 18: $Dict := Dict \cup Dict_{L} \cup Dict_{R}$ 19: return Dict 20:

Algorithm 2 Recover(\mathcal{P} , act, idx = (T)) \rightarrow Dict 1: $N = |\mathcal{P}|, T = |act|$ 2: if T = 1 then **return** Dict := {user : idx | user $\in \mathcal{P}$ } 3: 4: else 5: c = |N/2|. Parse $\mathcal{P} = \mathcal{P}_I \sqcup \mathcal{P}_R$, with \mathcal{P}_I the c smallest elements of \mathcal{P} $k = |\mathcal{P}_L|, \operatorname{act}_L = \operatorname{act} \cap \mathcal{P}_L, \operatorname{act}_R = \operatorname{act} \cap \mathcal{P}_R$ 6: $idx_{L} \coloneqq (idx, k)$ 7: 8: $idx_R := (idx, T - k)$ if k = 0 then 9: **return** Recover(\mathcal{P}_R , act_R, idx_R) 10: else if k = T then 11: 12: **return** Recover($\mathcal{P}_{l}, act_{l}, idx_{l}$) 13: else $Dict_{l} := Recover(\mathcal{P}_{l}, act_{l}, idx_{l})$ 14: $Dict_R := Recover(\mathcal{P}_R, act_R, idx_R)$ 15: **return** Dict := Dict₁ \sqcup Dict_R 16:

Efficiency comparison (shares/party)

(a) Vandermonde: $O((N/\log N)^{\log N})$ shares/party

(b) Replicated: up to $\binom{N-1}{N-1} \approx 2^N$ shares/party

PQC

Figure 2: Contour plots of the number of shares/party, as a function of N and T (undef. for T > N).

Scheme	Shares/party	T _{correctness} T _{privacy}	IA
Shamir	1	1	No
Replicated	2 ^N	1	Yes
Coupon Collector	p · q	$1 + O\left(\frac{\kappa/p + \ln \kappa}{\ln(n q)}\right)$	Yes
Vandermonde	$O\left(\left(\frac{N}{\log N}\right)^{\log N}\right)$	1	Yes

Questions?

https://raccoonfamily.org https://tprest.github.io

Consider T independent Gaussian vectors $\mathbf{x}_i \leftarrow D_{\sigma}^n$. Let $\mathbf{x} = \sum_{i \in [T]} \mathbf{x}_i$. What can we say about $\|\mathbf{x}\|$? POCL

D)

Consider *T* independent Gaussian vectors $\mathbf{x}_i \leftarrow D_{\sigma}^n$. Let $\mathbf{x} = \sum_{i \in [T]} \mathbf{x}_i$. What can we say about $\|\mathbf{x}\|$?

Figure 3: Average-case: $O(\sqrt{T})$

Figure 4: Worst-case: O(T)

Signatures by honest signers would end up in Fig. 4

 \times But colluding signers could force the Fig. 3

This will decrease security. Can we do better?

If $\mathbf{x}_i \leftarrow D_{\sigma}^n$, it is well known^M that:

If $\mathbf{x}_i \leftarrow D_{\sigma}^n$, it is well known^M that: 1 $\|\mathbf{x}_i\|$ is concentrated around its expected value $\sigma\sqrt{n}$

The Death Star Algorithm

If x_i ← Dⁿ_σ, it is well known[™] that: **1** ||x_i|| is concentrated around its expected value σ√n **2** For any vector y:

 $\langle \mathbf{x}_{j},\mathbf{y}
angle < \sigma\sqrt{O(\lambda)}\left\|\mathbf{y}
ight\|$ (9)

except with probability $\leq 2^{-\lambda}$

The Death Star Algorithm

- **1** For each signer *i*:
 - (1) If $\|\mathbf{x}_i\| \ge (1 + o(1))\sigma\sqrt{n}$, reject *i* (2) If $\langle \mathbf{x}_i, \mathbf{y}_i \rangle \ge \sigma\sqrt{O(\lambda)} \|\mathbf{y}_i\|$, where $\mathbf{y}_i = \sum_{j \ne i} \mathbf{x}_j$, reject *i*

Lemma: for a set of non-rejected $(\mathbf{x}_i)_{i \in [T]}$, the sum $\mathbf{x} = \sum_i \mathbf{x}_i$ satistifes:

 $\|\mathbf{x}\| \le \sigma \cdot T \cdot \sqrt{2 \log 2 \cdot \lambda}$ (9) + $\sigma \cdot \sqrt{T \cdot d} \cdot (1 + \varepsilon)$ (10)

Comparison with standard approaches

POC

Figure 5: Norm of $\mathbf{x} = \sum_{i \in [T]} \mathbf{x}_i$, for $\sigma = 1$, dimension n = 4096, $\lambda = 128$ bits of security, and $1 \le T \le 1000$.

Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen.

VSS from distributed ZK proofs and applications.

In Jian Guo and Ron Steinfeld, editors, *ASIACRYPT 2023, Part I*, volume 14438 of *LNCS*, pages 405–440. Springer, Singapore, December 2023.

Masayuki Abe and Serge Fehr.

Adaptively secure feldman VSS and applications to universally-composable threshold cryptography.

In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 317–334. Springer, Berlin, Heidelberg, August 2004.

Shweta Agrawal, Damien Stehlé, and Anshu Yadav.

Round-optimal lattice-based threshold signatures, revisited.

In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022, volume 229 of *LIPIcs*, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, and Mehdi Tibouchi.

Ringtail: Practical two-round threshold signatures from learning with errors.

Cryptology ePrint Archive, Report 2024/1113, 2024.

Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the (in)security of ROS.

Journal of Cryptology, 35(4):25, October 2022.

Mihir Bellare and Gregory Neven.

Multi-signatures in the plain public-key model and a general forking lemma.

In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

- Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
- Adaptive security for threshold cryptosystems.

In Michael J. Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages 98–115. Springer, Berlin, Heidelberg, August 1999.

- Elizabeth C. Crites, Chelsea Komlo, and Mary Maller.
 - Fully adaptive Schnorr threshold signatures.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 678–709. Springer, Cham, August 2023.

Yvo Desmedt, Giovanni Di Crescenzo, and Mike Burmester.

Multiplicative non-abelian sharing schemes and their application to threshold cryptography. In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, *ASIACRYPT'94*, volume 917 of *LNCS*, pages 21–32. Springer, Berlin, Heidelberg, November / December 1995.

- Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
 - On the security of two-round multi-signatures.

In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019.

Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, Mélissa Rossi, and Markku-Juhani Saarinen.

Raccoon.

Technical report, National Institute of Standards and Technology, 2023. available at https: //csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and Markku-Juhani O. Saarinen. Threshold raccoon: Practical threshold signatures from standard lattice assumptions.

In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 219–248. Springer, Cham, May 2024.

Benjamin Doerr.

Probabilistic tools for the analysis of randomized optimization heuristics.

CoRR, abs/1801.06733, 2018.

Rafaël del Pino, Shuichi Katsumata, Thomas Prest, and Mélissa Rossi.

Raccoon: A masking-friendly signature proven in the probing model. In Leonid Reyzin and Douglas Stebila, editors, *CRYPTO 2024*, *Part I*, volume 14920 of *LNCS*, pages 409–444. Springer, Cham, August 2024.

- Julien Devevey, Alain Passelègue, and Damien Stehlé.

G+G: A fiat-shamir lattice signature based on convolved gaussians.

In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS, pages 37–64. Springer, Singapore, December 2023.

Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, and Ron Steinfeld.

Plover: Masking-friendly hash-and-sign lattice signatures.

In Marc Joye and Gregor Leander, editors, *EUROCRYPT 2024*, *Part VII*, volume 14657 of *LNCS*, pages 316–345. Springer, Cham, May 2024.

Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure.

Two-round threshold signature from algebraic one-more learning with errors.

In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 387–424. Springer, Cham, August 2024.

Thomas Espitau, Guilhem Niot, and Thomas Prest.

Flood and submerse: Distributed key generation and robust threshold signature from lattices. In Leonid Reyzin and Douglas Stebila, editors, *CRYPTO 2024*, *Part VII*, volume 14926 of *LNCS*, pages 425–458. Springer, Cham, August 2024.

Craig Gentry, Shai Halevi, and Vadim Lyubashevsky.

Practical non-interactive publicly verifiable secret sharing with thousands of parties. In Orr Dunkelman and Stefan Dziembowski, editors, *EUROCRYPT 2022*, *Part I*, volume 13275 of *LNCS*, pages 458–487. Springer, Cham, May / June 2022.

Kamil Doruk Gür, Jonathan Katz, and Tjerand Silde.

Two-round threshold lattice-based signatures from threshold homomorphic encryption. In Markku-Juhani Saarinen and Daniel Smith-Tone, editors, Post-Quantum Cryptography - 15th International Workshop, PQCrypto 2024, Part II, pages 266–300. Springer, Cham, June 2024.

Stanislaw Jarecki and Anna Lysyanskaya.

Adaptively secure threshold cryptography: Introducing concurrency, removing erasures. In Bart Preneel, editor, *EUROCRYPT 2000*, volume 1807 of *LNCS*, pages 221–242. Springer, Berlin, Heidelberg, May 2000.

Corentin Jeudy, Adeline Roux-Langlois, and Olivier Sanders.

Phoenix: Hash-and-sign with aborts from lattice gadgets.

In Markku-Juhani Saarinen and Daniel Smith-Tone, editors, Post-Quantum Cryptography - 15th International Workshop, PQCrypto 2024, Part I, pages 265–299. Springer, Cham, June 2024.

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.

A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EUROCRYPT 2018*, *Part III*, volume 10822 of *LNCS*, pages 552–586. Springer, Cham, April / May 2018.

Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
 Toward practical lattice-based proof of knowledge from hint-MLWE.
 In Helena Handschuh and Anna Lysyanskaya, editors, *CRYPTO 2023, Part V*, volume 14085 of *LNCS*, pages 549–580. Springer, Cham, August 2023.

Shuichi Katsumata, Michael Reichle, and Kaoru Takemure.

Adaptively secure 5 round threshold signatures from MLWE/MSIS and DL with rewinding. In Leonid Reyzin and Douglas Stebila, editors, *CRYPTO 2024*, *Part VII*, volume 14926 of *LNCS*, pages 459–491. Springer, Cham, August 2024.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai.

CRYSTALS-DILITHIUM.

Technical report, National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/ selected-algorithms-2022.

Yang Yu, Huiwen Jia, and Xiaoyun Wang.

Compact lattice gadget and its applications to hash-and-sign signatures.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 390–420. Springer, Cham, August 2023.