
Secret Sharings for
Lattice-Based

Threshold Signatures
Thomas Prest (joint work w/ PQShield & friends)

April 25, 2025

Lattice
Signatures

Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace)
Similar design also found in [ASY22, GKS24]

Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace)
Similar design also found in [ASY22, GKS24]

Raccoon: Schnorr over lattices

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)
1 w′ = gz · vk−c
2 Assert H(w′,msg) = c

Security of Raccoon

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Security: Raccoon is EUF‐CMA
assuming:
1 Hint‐MLWE [KLSS23] (next slide)

Implied by lack of rejection
sampling
Ensures uniformity of the public
key

2 Self‐target MSIS [KLS18]
Unforgeability

Hint-MLWE?
(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b :=
[
A I

]
· sk

}
{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:

(ci, zi ← ci · sk+ ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk+

∑
i
c∗i · ri

≈ Q · ω · sk+O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If sk and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

Hint-MLWE?
(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b :=
[
A I

]
· sk

}
{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:

(ci, zi ← ci · sk+ ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk+

∑
i
c∗i · ri

≈ Q · ω · sk+O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If sk and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

Hint-MLWE?
(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b :=
[
A I

]
· sk

}
{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:

(ci, zi ← ci · sk+ ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk+

∑
i
c∗i · ri

≈ Q · ω · sk+O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If sk and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

Threshold
Cryptography

Main idea
Distribute trust across devices⇒ Increased resilience

Attacker: how many
devices to compromise?

Attacker: how many
devices to destroy?

1 device 1 key 1 / 1 1 / 1

N devices 1 key 1 / N N / N

N devices N keys N / N 1 / N

N devices T‐out‐of‐N keys T / N (N ‐ T + 1) / N

The two last solutions fall under threshold cryptography
Main focus of the NIST MPTC programme
Reminiscent of masking, but key differences in the attack model and properties

Model

Communication
Authenticated, reliable & synchronous
broadcast channel
Each i and j may share an authenticated
private channel (via AEAD)

Syntax
One public key vk
Each user i has a secret key share ski
Signing is an interactive protocol
between |S| signers

Our protocols are 3‐4 rounds
(|S| < T)⇒ ⊥
(|S| = T)⇒ sig a valid signature

Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.

Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.

Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.

So You Want to
Thresholdize
Raccoon?

Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Secret‐sharing a secret a ∈ Zp:
Generate P(x) of degree at most T− 1 such that P(0) = a
Each party i ∈ Zp receives a share ai = P(i)

Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Properties:
With < T shares, a is perfectly hidden
With a set S of T shares, a can be recovered via Lagrange interpolation:

a =
∑
i∈S

λi,S · ai, where λi,S =
∏

j∈S\{i}

j
i− j

(2)

Threshold Schnorr signatures

Sparkle
Each signer i knows a share ski of sk.

Round 1:
1 Sample ri
2 wi = gri
3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∏
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi,S · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

See [BN06, CKM23]
This produces valid Schnorr
signatures:

gz = g
∑

i zi

=
(
g
∑

i ri
)
·
(
gc

∑
i λi,S ·ski

)
= w · vkc

Security: in zi, ri is uniform and
perfectly hides c · λi,S · ski
Commit‐then‐reveal wi to avoid
ROS attacks [DEF+19, BLL+22]
(we may ignore them for this talk)
Can we transpose this to Raccoon?

First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)

Issue: when we consider

zi = ri + c · λi · ski, (3)

ri is small but c · λi · ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (3) one can recover ski

How do we solve this?
1 Add zero‐share to zi [DKM+24]
2 Use Shamir everywhere [ENP24]
3 Short secret sharings [this talk!]

First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)
Issue: when we consider

zi = ri + c · λi · ski, (3)

ri is small but c · λi · ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (3) one can recover ski

How do we solve this?
1 Add zero‐share to zi [DKM+24]
2 Use Shamir everywhere [ENP24]
3 Short secret sharings [this talk!]

First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)
Issue: when we consider

zi = ri + c · λi · ski, (3)

ri is small but c · λi · ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (3) one can recover ski

How do we solve this?
1 Add zero‐share to zi [DKM+24]
2 Use Shamir everywhere [ENP24]
3 Short secret sharings [this talk!]

Short Secret
Sharings

Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large

Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large

Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 The reconstruction vector λS is short

Example: N‐out‐of‐N sharing where:
(xi)1≤i<N ← DN−1σ and xN = x−

∑
i<N
xi

λS = (1, . . . ,1)

Threshold Raccoon w/ short secret sharing
Threshold Raccoon, short shares

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

Security
Even if a set of shares (ski)i∈C leak:

sk|(ski)i∈C ∼
∑
i∈C

ski + Dσ√N−|C|

Partial signature leak nothing
ri hides c · λi · ski as
both are short
We argue security via Hint‐MLWE

Identifiable aborts
Each vki =

[
A I

]
· ski is a valid

public key
Therefore each (c, zi) is a valid
partial signature
We get identifiable aborts for free!

Rest of this section and of this talk

Three secret sharings based on set theory:

Replicated secret sharing
Scales terribly

Coupon collector secret sharing
Scales well
Ramp (privacy threshold < correctness threshold)

Vandermonde secret sharing
Scales well
No ramp

Replicated
Secret Sharing

Replicated secret sharing
Replicated secret sharing

We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
The secret is s =

∑
J sJ

T‐correctness: for each share sJ, exactly T− 1 users do not have it
(T− 1)‐privacy: for any set act of size |act| = T− 1, no member of act has
the share s{1,...,N}\act

1 2 3 4

12 1314 23 24 34

1 3 4

Figure 1: Illustration with (N, T) = (4,3).

Replicated secret sharing

Practical considerations
Number of shares:

(N
N−T+1

)
When signing, how do we assign shares to users? Here for act = {1,3,4}:

Naive solution: assign each share sJ to u = min(J)
Other solutions might exist (wink)

1 2 3 4

1212 13131414 2323 2424 3434

1 3 4

Figure 1: Illustration with (N, T) = (4,3).

Coupon Collector
Secret Sharing

The coupon collector problem
The coupon collector problem
Let S = {1, . . . , n}. Starting at i = 1, we sample xi ← S, until

∪
i
{xi} = S.

The number of iterations of this sampling process follows a distribution Tn.
The coupon collector’s problem refers to the mathematical analysis of Tn.

Fact: E[Tn] = n
(
1
1 +

1
2 + · · ·+

1
n

)
∼ n log n.

Cumulative distribution graph of Tn for n = 100 (restricted):

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

Coupon collector secret sharing (CCSS)
Lemma (Adapted from [Doe18])
If εmin = lnC

ln n , εmax =
C
ln n , then:

P[Tn ≤ Tmin] ≤ e−C, where Tmin = max ((1− εmin) (n− 1) ln n, n) (4)
P[Tn ≥ Tmax] ≤ e−C, where Tmax = (1+ εmax) n ln n (5)

Main idea
Sample n shares si, set s =

∑
i si

Each user receives a random share
w.o.p. a set of ≤ Tmin users
cannot recover all the shares
w.o.p. a set of ≥ Tmax users can
recover all the shares

Problem: TmaxTmin
∼ 1+ εmax + εmin ≫ 1.

For n = 100:
(Tmin,E[Tn], Tmax) = (102,497,9287).

0 2,000 4,000 6,000 8,000
0

0.2
0.4
0.6
0.8
1

Improving the CCSS

Optimization 1
s is now shared p times in parallel

Each user receives one share of
each sharing
Allows to relax correctness
We may decrease εmax to C/p

ln n

Optimization 2
Increase n by a factor q

Now each user receives n shares
(per sharing)
“Amplify” asymptotic behavior

Example with n q = 400 and p = 16: we have Tmax
Tmin
∼ 1+ C/p+lnC

ln(n q)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

0.2
0.4
0.6
0.8
1

Vandermonde
Secret Sharing

Vandermonde’s identity
For 0 ≤ c ≤ N: (

N
T

)
=

T∑
k=0

(
c
k

)
·
(
N− c
T− k

)
(6)

Distribution theory interpretation: The sum of two binomials is a binomial:

B(m, p) + B(n, p) ∼ B(m+ n, p) (7)

Set theory interpretation: let us note SS,T the subsets of S of cardinality T.
Any subset act ∈ S{1,...,N},T can be decomposed uniquely as:

act = actL ⊔ actR, where

{
actL ⊆ {1, . . . , c}
actR ⊆ {c+ 1, . . . ,N}

(8)

Eq. (6) follows from enumerating these decompositions.

Vandermonde secret sharing [DDB95] turns this into a secret sharing:
Enumerating all the possible disjunctions of the form in Eq. (8)
For each disjunction, share the secret in two

Recursively share the first half across members of actL
Recursively share the second half across members of actL

Example: 4-out-of-8

Share with (N, T) = (8,4) from the point of view of user 7

7
(4)

7

(4, 4), (4, 3),
(4, 2), (4, 1)

7

(4, 4, 2),
(4, 3, 2),
(4, 2, 2),
(4, 3, 1),
(4, 2, 1)

7

(4, 4, 2, 1),
(4, 3, 2, 1),
(4, 2, 2, 1)

Recover with act = {1,2,3,7}

1, 2, 3, 7
(4)

1, 2, 3
(4, 3)

7
7→ (4, 1)

1
1→ (4, 3, 1)

2,3
(4, 3, 2)

2
2→ (4, 3, 2, 1)

3
3→ (4, 3, 2, 1)

Algorithms
Algorithm 1 Share(x,P, T,idx = (T))→ Dict

1: N = |P|
2: if T = 1 then
3: return Dict := {user : {idx : x} | user ∈ P}
4: else
5: Dict = {user : {:} | user ∈ P}. c = ⌊N/2⌋
6: Parse P = PL ⊔ PR, with PL the c smallest ele‐
ments of P

7: for k = max(0, T− N+ c), . . . ,min(c, T) do
8: idxL := (idx, k)
9: idxR := (idx, T− k)
10: if k = 0 then
11: Dict := Dict ∪ Share(x,PR, T,idxR)
12: else if k = T then
13: Dict := Dict ∪ Share(x,PL, T,idxL)
14: else
15: x0 ← χ
16: x1 := (x− x0) mod q
17: DictL := Share(x,PL, k,idxL)
18: DictR := Share(x,PR, T− k,idxR)
19: Dict := Dict ∪ DictL ∪ DictR
20: return Dict

Algorithm 2 Recover(P,act,idx = (T))→ Dict

1: N = |P|, T = |act|
2: if T = 1 then
3: return Dict := {user : idx | user ∈ P}
4: else
5: c = ⌊N/2⌋. Parse P = PL ⊔ PR, with PL the c
smallest elements of P

6: k = |PL|,actL = act ∩ PL,actR = act ∩ PR
7: idxL := (idx, k)
8: idxR := (idx, T− k)
9: if k = 0 then
10: return Recover(PR,actR,idxR)
11: else if k = T then
12: return Recover(PL,actL,idxL)
13: else
14: DictL := Recover(PL,actL,idxL)
15: DictR := Recover(PR,actR,idxR)
16: return Dict := DictL ⊔ DictR

Efficiency comparison (shares/party)

20 40 60
N

20

40

60

T 0

60
0

1200 1800

24
00

30
00

36
00

42
00

(a) Vandermonde: O((N/ logN)logN) shares/party

20 40 60
N

20

40

60

T 0

100

10
2

10
4

106
108

10
10

10
12

10 14

10
16

(b) Replicated: up to (N−1N−T

)
≈ 2N shares/party

Figure 2: Contour plots of the number of shares/party, as a function of N and T (undef. for T > N).

Conclusion

Scheme Shares/party Tcorrectness
Tprivacy

IA

Shamir 1 1 No

Replicated 2N 1 Yes

Coupon Collector p · q 1+O
(
κ/p+ln κ
ln(n q)

)
Yes

Vandermonde O
((

N
logN

)logN)
1 Yes

Questions?
https://raccoonfamily.org
https://tprest.github.io

https://raccoonfamily.org
https://tprest.github.io

The Death Star
Algorithm

How large is the sum of T vectors?

Consider T independent Gaussian vectors xi ← Dnσ.
Let x =

∑
i∈[T] xi. What can we say about ∥x∥?

x

Figure 3: Average‐case: O(
√
T)

x

Figure 4:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 4
But colluding signers could force the Fig. 3

This will decrease security. Can we do better?

How large is the sum of T vectors?

Consider T independent Gaussian vectors xi ← Dnσ.
Let x =

∑
i∈[T] xi. What can we say about ∥x∥?

x

Figure 3: Average‐case: O(
√
T)

x

Figure 4:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 4
But colluding signers could force the Fig. 3

This will decrease security. Can we do better?

The Death Star Algorithm

If xi ← Dnσ, it is well known™ that:

1 ∥xi∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨xi, y⟩ < σ
√
O(λ) ∥y∥ (9)

except with probability ≤ 2−λ

The Death Star Algorithm

If xi ← Dnσ, it is well known™ that:
1 ∥xi∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨xi, y⟩ < σ
√
O(λ) ∥y∥ (9)

except with probability ≤ 2−λ

The Death Star Algorithm

y
∥y∥

If xi ← Dnσ, it is well known™ that:
1 ∥xi∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨xi, y⟩ < σ
√
O(λ) ∥y∥ (9)

except with probability ≤ 2−λ

The Death Star Algorithm

y
∥y∥

The Death Star Algorithm
1 For each signer i:

1 If ∥xi∥ ≥ (1+ o(1))σ
√
n, reject i

2 If ⟨xi, yi⟩ ≥ σ
√
O(λ) ∥yi∥, where

yi =
∑

j̸=i xj, reject i

Lemma: for a set of non‐rejected
(xi)i∈[T], the sum x =

∑
i xi satistifes:

∥x∥ ≤ σ · T ·
√
2 log 2 · λ (9)

+ σ ·
√
T · d · (1+ ε) (10)

Comparison with standard approaches

0 200 400
0

10,000

20,000

30,000

T

∥x
∥

Malicious, identifiable aborts, no Death Star (≈ σ T
√
d)

Malicious, identifiable aborts with Death Star
Honest setting, no identifiable aborts (≈ σ

√
T d)

Figure 5: Norm of x =
∑

i∈[T] xi, for σ = 1, dimension n = 4096, λ = 128 bits of security,
and 1 ≤ T ≤ 1000.

Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen.
VSS from distributed ZK proofs and applications.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part I, volume 14438 of LNCS, pages
405–440. Springer, Singapore, December 2023.

Masayuki Abe and Serge Fehr.
Adaptively secure feldman VSS and applications to universally‐composable threshold
cryptography.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 317–334. Springer,
Berlin, Heidelberg, August 2004.

Shweta Agrawal, Damien Stehlé, and Anshu Yadav.
Round‐optimal lattice‐based threshold signatures, revisited.
In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022, volume 229
of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, and Mehdi
Tibouchi.
Ringtail: Practical two‐round threshold signatures from learning with errors.
Cryptology ePrint Archive, Report 2024/1113, 2024.

Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS.
Journal of Cryptology, 35(4):25, October 2022.

Mihir Bellare and Gregory Neven.
Multi‐signatures in the plain public‐key model and a general forking lemma.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006,
pages 390–399. ACM Press, October / November 2006.

Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive security for threshold cryptosystems.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 98–115. Springer, Berlin,
Heidelberg, August 1999.

Elizabeth C. Crites, Chelsea Komlo, and Mary Maller.
Fully adaptive Schnorr threshold signatures.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of
LNCS, pages 678–709. Springer, Cham, August 2023.

Yvo Desmedt, Giovanni Di Crescenzo, and Mike Burmester.
Multiplicative non‐abelian sharing schemes and their application to threshold cryptography.
In Josef Pieprzyk and Reihaneh Safavi‐Naini, editors, ASIACRYPT’94, volume 917 of LNCS, pages
21–32. Springer, Berlin, Heidelberg, November / December 1995.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs.
On the security of two‐round multi‐signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE Computer Society
Press, May 2019.

Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas
Prest, Mélissa Rossi, and Markku‐Juhani Saarinen.
Raccoon.
Technical report, National Institute of Standards and Technology, 2023.
available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and
Markku‐Juhani O. Saarinen.
Threshold raccoon: Practical threshold signatures from standard lattice assumptions.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS,
pages 219–248. Springer, Cham, May 2024.

Benjamin Doerr.
Probabilistic tools for the analysis of randomized optimization heuristics.
CoRR, abs/1801.06733, 2018.

Rafaël del Pino, Shuichi Katsumata, Thomas Prest, and Mélissa Rossi.
Raccoon: A masking‐friendly signature proven in the probing model.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920 of LNCS,
pages 409–444. Springer, Cham, August 2024.

Julien Devevey, Alain Passelègue, and Damien Stehlé.
G+G: A fiat‐shamir lattice signature based on convolved gaussians.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS, pages
37–64. Springer, Singapore, December 2023.

Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, and Ron
Steinfeld.
Plover: Masking‐friendly hash‐and‐sign lattice signatures.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VII, volume 14657 of LNCS,
pages 316–345. Springer, Cham, May 2024.

Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure.
Two‐round threshold signature from algebraic one‐more learning with errors.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 387–424. Springer, Cham, August 2024.

Thomas Espitau, Guilhem Niot, and Thomas Prest.
Flood and submerse: Distributed key generation and robust threshold signature from lattices.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 425–458. Springer, Cham, August 2024.

Craig Gentry, Shai Halevi, and Vadim Lyubashevsky.
Practical non‐interactive publicly verifiable secret sharing with thousands of parties.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of
LNCS, pages 458–487. Springer, Cham, May / June 2022.

Kamil Doruk Gür, Jonathan Katz, and Tjerand Silde.

Two‐round threshold lattice‐based signatures from threshold homomorphic encryption.
In Markku‐Juhani Saarinen and Daniel Smith‐Tone, editors, Post‐Quantum Cryptography ‐ 15th
International Workshop, PQCrypto 2024, Part II, pages 266–300. Springer, Cham, June 2024.

Stanislaw Jarecki and Anna Lysyanskaya.
Adaptively secure threshold cryptography: Introducing concurrency, removing erasures.
In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 221–242. Springer,
Berlin, Heidelberg, May 2000.

Corentin Jeudy, Adeline Roux‐Langlois, and Olivier Sanders.
Phoenix: Hash‐and‐sign with aborts from lattice gadgets.
In Markku‐Juhani Saarinen and Daniel Smith‐Tone, editors, Post‐Quantum Cryptography ‐ 15th
International Workshop, PQCrypto 2024, Part I, pages 265–299. Springer, Cham, June 2024.

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.
A concrete treatment of Fiat‐Shamir signatures in the quantum random‐oracle model.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 552–586. Springer, Cham, April / May 2018.

Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Toward practical lattice‐based proof of knowledge from hint‐MLWE.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 549–580. Springer, Cham, August 2023.

Shuichi Katsumata, Michael Reichle, and Kaoru Takemure.

Adaptively secure 5 round threshold signatures from MLWE/MSIS and DL with rewinding.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 459–491. Springer, Cham, August 2024.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai.
CRYSTALS‐DILITHIUM.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

Yang Yu, Huiwen Jia, and Xiaoyun Wang.
Compact lattice gadget and its applications to hash‐and‐sign signatures.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 390–420. Springer, Cham, August 2023.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Lattice Signatures
	Threshold Cryptography
	So You Want to Thresholdize Raccoon?
	Short Secret Sharings
	Replicated Secret Sharing
	Coupon Collector Secret Sharing
	Vandermonde Secret Sharing
	Conclusion
	Appendix
	The Death Star Algorithm

