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Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace )
Similar design also found in [ASY22, GKS24]
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Raccoon: Schnorr over lattices

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)
1 w′ = gz · vk−c
2 Assert H(w′,msg) = c



Security of Raccoon

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Security: Raccoon is EUF‐CMA
assuming:
1 Hint‐MLWE [KLSS23] (next slide)

Implied by lack of rejection
sampling
Ensures uniformity of the public
key

2 Self‐target MSIS [KLS18]
Unforgeability



Hint-MLWE?
(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b :=
[
A I

]
· sk

}
{
(A,b)|A←Rk×ℓ

q ,sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:

(ci, zi ← ci · sk+ ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk+

∑
i
c∗i · ri

≈ Q · ω · sk+O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If sk and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)
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Threshold
Cryptography



Main idea
Distribute trust across devices⇒ Increased resilience

Attacker: how many
devices to compromise?

Attacker: how many
devices to destroy?

1 device 1 key 1 / 1 1 / 1

N devices 1 key 1 / N N / N

N devices N keys N / N 1 / N

N devices T‐out‐of‐N keys T / N (N ‐ T + 1) / N

The two last solutions fall under threshold cryptography
Main focus of the NIST MPTC programme
Reminiscent of masking, but key differences in the attack model and properties



Model

Communication
Authenticated, reliable & synchronous
broadcast channel
Each i and j may share an authenticated
private channel (via AEAD)

Syntax
One public key vk
Each user i has a secret key share ski
Signing is an interactive protocol
between |S| signers

Our protocols are 3‐4 rounds
(|S| < T)⇒ ⊥
(|S| = T)⇒ sig a valid signature



Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.
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So You Want to
Thresholdize
Raccoon?



Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Secret‐sharing a secret a ∈ Zp:
Generate P(x) of degree at most T− 1 such that P(0) = a
Each party i ∈ Zp receives a share ai = P(i)



Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Properties:
With < T shares, a is perfectly hidden
With a set S of T shares, a can be recovered via Lagrange interpolation:

a =
∑
i∈S

λi,S · ai, where λi,S =
∏

j∈S\{i}

j
i− j

(2)



Threshold Schnorr signatures

Sparkle
Each signer i knows a share ski of sk.

Round 1:
1 Sample ri
2 wi = gri
3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∏
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi,S · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

See [BN06, CKM23]
This produces valid Schnorr
signatures:

gz = g
∑

i zi

=
(
g
∑

i ri
)
·
(
gc

∑
i λi,S ·ski

)
= w · vkc

Security: in zi, ri is uniform and
perfectly hides c · λi,S · ski
Commit‐then‐reveal wi to avoid
ROS attacks [DEF+19, BLL+22]
(we may ignore them for this talk)
Can we transpose this to Raccoon?



First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)

Issue: when we consider

zi = ri + c · λi · ski, (3)

ri is small but c · λi · ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (3) one can recover ski

How do we solve this?
1 Add zero‐share to zi [DKM+24]
2 Use Shamir everywhere [ENP24]
3 Short secret sharings [this talk!]
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Short Secret
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Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large
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Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 The reconstruction vector λS is short

Example: N‐out‐of‐N sharing where:
(xi)1≤i<N ← DN−1σ and xN = x−

∑
i<N
xi

λS = (1, . . . ,1)



Threshold Raccoon w/ short secret sharing
Threshold Raccoon, short shares

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

Security
Even if a set of shares (ski)i∈C leak:

sk|(ski)i∈C ∼
∑
i∈C

ski + Dσ√N−|C|

Partial signature leak nothing
ri hides c · λi · ski as
both are short
We argue security via Hint‐MLWE

Identifiable aborts
Each vki =

[
A I

]
· ski is a valid

public key
Therefore each (c, zi) is a valid
partial signature
We get identifiable aborts for free!



Rest of this section and of this talk

Three secret sharings based on set theory:

Replicated secret sharing
Scales terribly

Coupon collector secret sharing
Scales well
Ramp (privacy threshold < correctness threshold)

Vandermonde secret sharing
Scales well
No ramp



Replicated
Secret Sharing



Replicated secret sharing
Replicated secret sharing

We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
The secret is s =

∑
J sJ

T‐correctness: for each share sJ, exactly T− 1 users do not have it
(T− 1)‐privacy: for any set act of size |act| = T− 1, no member of act has
the share s{1,...,N}\act

1 2 3 4

12 1314 23 24 34

1 3 4

Figure 1: Illustration with (N, T) = (4,3).



Replicated secret sharing

Practical considerations
Number of shares:

( N
N−T+1

)
When signing, how do we assign shares to users? Here for act = {1,3,4}:

Naive solution: assign each share sJ to u = min(J)
Other solutions might exist (wink)

1 2 3 4

1212 13131414 2323 2424 3434

1 3 4

Figure 1: Illustration with (N, T) = (4,3).



Coupon Collector
Secret Sharing



The coupon collector problem
The coupon collector problem
Let S = {1, . . . , n}. Starting at i = 1, we sample xi ← S, until

∪
i
{xi} = S.

The number of iterations of this sampling process follows a distribution Tn.
The coupon collector’s problem refers to the mathematical analysis of Tn.

Fact: E[Tn] = n
(
1
1 +

1
2 + · · ·+

1
n

)
∼ n log n.

Cumulative distribution graph of Tn for n = 100 (restricted):

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8
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Coupon collector secret sharing (CCSS)
Lemma (Adapted from [Doe18])
If εmin = lnC

ln n , εmax =
C
ln n , then:

P[Tn ≤ Tmin] ≤ e−C, where Tmin = max ((1− εmin) (n− 1) ln n, n) (4)
P[Tn ≥ Tmax] ≤ e−C, where Tmax = (1+ εmax) n ln n (5)

Main idea
Sample n shares si, set s =

∑
i si

Each user receives a random share
w.o.p. a set of ≤ Tmin users
cannot recover all the shares
w.o.p. a set of ≥ Tmax users can
recover all the shares

Problem: TmaxTmin
∼ 1+ εmax + εmin ≫ 1.

For n = 100:
(Tmin,E[Tn], Tmax) = (102,497,9287).

0 2,000 4,000 6,000 8,000
0

0.2
0.4
0.6
0.8
1



Improving the CCSS

Optimization 1
s is now shared p times in parallel

Each user receives one share of
each sharing
Allows to relax correctness
We may decrease εmax to C/p

ln n

Optimization 2
Increase n by a factor q

Now each user receives n shares
(per sharing)
“Amplify” asymptotic behavior

Example with n q = 400 and p = 16: we have Tmax
Tmin
∼ 1+ C/p+lnC

ln(n q)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

0.2
0.4
0.6
0.8
1



Vandermonde
Secret Sharing



Vandermonde’s identity
For 0 ≤ c ≤ N: (

N
T

)
=

T∑
k=0

(
c
k

)
·
(
N− c
T− k

)
(6)

Distribution theory interpretation: The sum of two binomials is a binomial:

B(m, p) + B(n, p) ∼ B(m+ n, p) (7)

Set theory interpretation: let us note SS,T the subsets of S of cardinality T.
Any subset act ∈ S{1,...,N},T can be decomposed uniquely as:

act = actL ⊔ actR, where

{
actL ⊆ {1, . . . , c}
actR ⊆ {c+ 1, . . . ,N}

(8)

Eq. (6) follows from enumerating these decompositions.

Vandermonde secret sharing [DDB95] turns this into a secret sharing:
Enumerating all the possible disjunctions of the form in Eq. (8)
For each disjunction, share the secret in two

Recursively share the first half across members of actL
Recursively share the second half across members of actL



Example: 4-out-of-8

Share with (N, T) = (8,4) from the point of view of user 7

7
(4)

7

(4, 4), (4, 3),
(4, 2), (4, 1)

7

(4, 4, 2),
(4, 3, 2),
(4, 2, 2),
(4, 3, 1),
(4, 2, 1)

7

(4, 4, 2, 1),
(4, 3, 2, 1),
(4, 2, 2, 1)

Recover with act = {1,2,3,7}

1, 2, 3, 7
(4)

1, 2, 3
(4, 3)

7
7→ (4, 1)

1
1→ (4, 3, 1)

2,3
(4, 3, 2)

2
2→ (4, 3, 2, 1)

3
3→ (4, 3, 2, 1)



Algorithms
Algorithm 1 Share(x,P, T,idx = (T))→ Dict

1: N = |P|
2: if T = 1 then
3: return Dict := {user : {idx : x} | user ∈ P}
4: else
5: Dict = {user : {:} | user ∈ P}. c = ⌊N/2⌋
6: Parse P = PL ⊔ PR, with PL the c smallest ele‐
ments of P

7: for k = max(0, T− N+ c), . . . ,min(c, T) do
8: idxL := (idx, k)
9: idxR := (idx, T− k)
10: if k = 0 then
11: Dict := Dict ∪ Share(x,PR, T,idxR)
12: else if k = T then
13: Dict := Dict ∪ Share(x,PL, T,idxL)
14: else
15: x0 ← χ
16: x1 := (x− x0) mod q
17: DictL := Share(x,PL, k,idxL)
18: DictR := Share(x,PR, T− k,idxR)
19: Dict := Dict ∪ DictL ∪ DictR
20: return Dict

Algorithm 2 Recover(P,act,idx = (T))→ Dict

1: N = |P|, T = |act|
2: if T = 1 then
3: return Dict := {user : idx | user ∈ P}
4: else
5: c = ⌊N/2⌋. Parse P = PL ⊔ PR, with PL the c
smallest elements of P

6: k = |PL|,actL = act ∩ PL,actR = act ∩ PR
7: idxL := (idx, k)
8: idxR := (idx, T− k)
9: if k = 0 then
10: return Recover(PR,actR,idxR)
11: else if k = T then
12: return Recover(PL,actL,idxL)
13: else
14: DictL := Recover(PL,actL,idxL)
15: DictR := Recover(PR,actR,idxR)
16: return Dict := DictL ⊔ DictR



Efficiency comparison (shares/party)

20 40 60
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(a) Vandermonde: O((N/ logN)logN) shares/party
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(b) Replicated: up to (N−1N−T

)
≈ 2N shares/party

Figure 2: Contour plots of the number of shares/party, as a function of N and T (undef. for T > N).



Conclusion



Scheme Shares/party Tcorrectness
Tprivacy

IA

Shamir 1 1 No

Replicated 2N 1 Yes

Coupon Collector p · q 1+O
(
κ/p+ln κ
ln(n q)

)
Yes

Vandermonde O
((

N
logN

)logN)
1 Yes



Questions?
https://raccoonfamily.org
https://tprest.github.io

https://raccoonfamily.org
https://tprest.github.io


The Death Star
Algorithm



How large is the sum of T vectors?

Consider T independent Gaussian vectors xi ← Dnσ.
Let x =

∑
i∈[T] xi. What can we say about ∥x∥?

x

Figure 3: Average‐case: O(
√
T)

x

Figure 4:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 4
But colluding signers could force the Fig. 3

This will decrease security. Can we do better?
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The Death Star Algorithm

If xi ← Dnσ, it is well known™ that:

1 ∥xi∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨xi, y⟩ < σ
√
O(λ) ∥y∥ (9)

except with probability ≤ 2−λ
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The Death Star Algorithm

y
∥y∥

The Death Star Algorithm
1 For each signer i:

1 If ∥xi∥ ≥ (1+ o(1))σ
√
n, reject i

2 If ⟨xi, yi⟩ ≥ σ
√
O(λ) ∥yi∥, where

yi =
∑

j̸=i xj, reject i

Lemma: for a set of non‐rejected
(xi)i∈[T], the sum x =

∑
i xi satistifes:

∥x∥ ≤ σ · T ·
√
2 log 2 · λ (9)

+ σ ·
√
T · d · (1+ ε) (10)



Comparison with standard approaches

0 200 400
0

10,000

20,000

30,000

T

∥x
∥

Malicious, identifiable aborts, no Death Star (≈ σ T
√
d)

Malicious, identifiable aborts with Death Star
Honest setting, no identifiable aborts (≈ σ

√
T d)

Figure 5: Norm of x =
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i∈[T] xi, for σ = 1, dimension n = 4096, λ = 128 bits of security,
and 1 ≤ T ≤ 1000.
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