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Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace )
Similar design also found in [ASY22, GKS24]
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Raccoon: Schnorr over lattices
Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)
1 w′ = gz · vk−c
2 Assert H(w′,msg) = c



Security of Raccoon
Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Raccoon is EUF‐CMA assuming:
1 Hint‐MLWE [KLSS23]
2 Self‐target MSIS [KLS18]

Hint‐MLWE assumption
(A,vk) is pseudorandom even if given
Q “hints”:

(ci, zi = ri + ci · sk), i ∈ [Q] (1)

Note. Hint‐MLWE ≥MLWEσ if:

σr ≥ ∥c∥ ·
√
Q · σ (2)



Threshold
Cryptography



Why threshold cryptography?

Devices can be compromised by...
Malwares
Zero‐day exploits
Human error
...

Devices can be made out of order by...
Network or energy failure
Attack on the infrastructure
Destruction
...



The solution is redundancy

Key idea: distribute trust across several devices

Attacker: how many
devices to compromise?

Attacker: how many
devices to destroy?

1 device 1 key 1 / 1 1 / 1

N devices 1 key 1 / N N / N

N devices N keys N / N 1 / N

N devices T‐out‐of‐N keys T / N (N ‐ T + 1) / N

The two last solutions fall under threshold cryptography
Main focus of the NIST MPTC programme (see Luis’ talk tomorrow)
Reminiscent of masking, but key differences in the attack model and properties



How design choices impact properties

Design choices Size

Speed

Rounds

Communication

Robustness

Identifiable Aborts

Distributed Key
Generation (DKG)

Properties and
efficiency metrics
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Model

Communication
Authenticated, reliable & synchronous
broadcast channel
Each i and j may share an authenticated
private channel (via AEAD)

Syntax
One public key vk
Each user i has a secret key share ski
Signing is an interactive protocol
between |S| signers

Our protocols are 3‐4 rounds
(|S| < T)⇒ ⊥
(|S| = T)⇒ sig a valid signature



Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.
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Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10
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Secret‐sharing a secret a ∈ Zp:
Generate P(x) of degree at most T− 1 such that P(0) = a
Each party i ∈ Zp receives a share aiP(i)



Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Properties:
With < T shares, a is perfectly hidden
With a set S of T shares, a can be recovered via Lagrange interpolation:

a =
∑
i∈S

λi,S · ai, where λi,S =
∏

j∈S\{i}

j
i− j

(3)



Threshold Schnorr signatures
Sparkle
Each signer i knows a share ski of sk.

Round 1:
1 Sample ri
2 wi = gri
3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∏
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi,S · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

See [BN06, CKM23]
This produces valid Schnorr
signatures:

gz = g
∑

i zi

=
(
g
∑

i ri
)
·
(
gc

∑
i λi,S ·ski

)
= w · vkc

Security: in zi, ri is uniform and
perfectly hides c · λi,S · ski
We commit to wi before revealing it
to avoid ROS attacks
[DEF+19, BLL+22]
Can we transpose this to Raccoon?



First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)
Issue: when we consider

zi = ri + c · λi · ski, (4)

ri is small whereas c · λi ·ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (4) one can recover ski

This is the crossroads of the talk
Can we add to each z a value Δi
such that:

1 Any set of < T values Δi is
uniformy random?

2
∑

i∈S Δi = 0?
Lets call (Δi)i∈S a zero‐share.
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Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column
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(Δ1, . . . ,ΔT), where each Δi = mi −m∗
i , is a secret‐sharing of 0

For each (i, j), the mask mi,j remains secret if i and j are not corrupted



Second attempt
Threshold Raccoon

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2: Broadcast wi

and signature of view of Round 1

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 Δi =

∑
j (mj,i −mi,j)

4 zi = ri + c · λi · ski +Δi
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures:

z =
∑
i∈S

zi + Δi

=
∑
i∈S

(ri + c · λi · ski + Δi)

= c · sk+
∑
i∈S

ri

This negates the previous attack

One last thing: we sign the view of
Round 1 to avoid a fork attack

In [KRT24], the PRF is tweaked so
that no signature is needed

We can prove security under MSIS
and Hint‐MLWE
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Final observations for Threshold Raccoon

Sizes: about 10 KB
Speed: very fast (bottleneck is generating T pseudorandom vectors per user)
Rounds: 3 rounds

Reduced to 2 in [EKT24, BKL+24], but communications increases by a factor×10
Communication: 40 KB per user
Distributed key generation: ?
Robustness or IA: How do we check the computation PRF(Ki,j, sid)?

Further reading:
del Pino, Katsumata, Maller, Mouhartem, Prest, Saarinen. Threshold Raccoon: Practical
Threshold Signatures from Standard Lattice Assumptions. EUROCRYPT 2024 [DKM+24]

Espitau, Katsumata, Takemure. Two‐Round Threshold Signature from Algebraic One‐More
Learning with Errors. CRYPTO 2024 [EKT24]

Katsumata, Reichle, Takemure. Adaptively Secure 5 Round Threshold Signatures from
MLWE/MSIS and DL with Rewinding. CRYPTO 2024 [KRT24]



Flood and
Submerse



The key technical challenge is to mask a secret (λi · ski) with the randomness ri.

1 Direction 1 (Threshold Raccoon):
The shares of the secret are uniform
The randomness shares ri are short

A uniform zero‐share Δi is added to partial signatures in order to hide λi · ski.

2 Direction 2: Can we make both λi · ski and ri uniform?
Use Shamir secret sharing for both sk and r ⇒ This section

3 Direction 3: Can we make both λi · ski and ri short?
Use short secret sharing for both sk and r ⇒ Next section



Shamir Everywhere
Flood and Submerse

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi
5 (JriKj)j∈[S] ← Shamir.Share(ri)
6 Encrypt JriKj to each party j

Round 2: Broadcast wi
Round 3:

1 w =
∑

iwi
2 c = H(vk,msg,w)
3 JrKi = ∑

j∈[S]JriKj
4 zi = JrKi + c · ski
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S λi· zi)

Similar to [CGJ+99, JL00, AF04]

Security: JrKi is uniform and therefore
hides ski

This protocol can be augmented to
achieve robustness

Adds a complaint round
Adds a V3S (Verifiable Short Secret
Sharing) inspired from
[ABCP23, GHL22]

Lighter than NIZK
Same ideas can be used for DKG



Final observations for Flood-and-Submerse

Sizes: About 12 KB
Speed: Very fast (bottleneck is generating T ciphertext per user)
Rounds: 4 rounds
Communication: 56 · T KB per user
Distributed key generation: Yes
Robustness: Yes

Further reading:
Thomas Espitau, Guilhem Niot, Thomas Prest. Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature from Lattices. CRYPTO 2024 [ENP24]



The Death Star
Algorithm



Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large
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Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 The reconstruction vector λS is short

Example: N‐out‐of‐N sharing where:
x1, . . . , xN−1 ← DN−1σ , and xN = x−

∑
i<N
xi

λS = (1, . . . ,1)
Extensible to T‐out‐of‐N via replicated SS,
requires

( N
T−1

)
shares per party.



Threshold Raccoon with short shares

Threshold Raccoon, short shares
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

For simplicity, we consider T = N
Each λi = 1

Identifiable aborts
Each vki =

[
A I

]
· ski is a valid

public key
Therefore each (c, zi) is a valid
partial signature
We get identifiable aborts for free!

Security
ri hides c · ski as both are short
We argue security via Hint‐MLWE



How large is the sum of T vectors?

Consider the sum of T i.i.d. Gaussian vectors xi ← Dnσ.
What can se say about its norm?

X

Figure 1: Average‐case: O(
√
T)

X

Figure 2:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 2
But colluding signers could force the Fig. 1

This will decrease security. Can we do better?
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The Death Star Algorithm

If x← Dnσ, it is well known that™:

1 ∥x∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨x, y⟩ < σ
√
O(λ) ∥y∥ (5)

except with probability ≤ 2−λ
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The Death Star Algorithm

y
∥y∥

The Death Star Algorithm
1 For each signer i:

1 If ∥xi∥ ≥ (1+ o(1))σ
√
n, reject i

2 If ⟨xi, yi⟩ ≥ σ
√
O(λ) ∥yi∥, where

yi =
∑

j̸=i xj, reject i

Lemma: for a set of non‐rejected
(xi)i∈[T], the sum x =

∑
i xi satistifes:

∥x∥ ≤ σ · T ·
√
2 log 2 · λ (5)

+ σ ·
√
T · d · (1+ ε) (6)



Comparison with standard approaches

0 200 400
0

10,000

20,000

30,000

T

∥x
∥

Malicious, identifiable aborts, no Death Star (≈ σ T
√
d)

Malicious, identifiable aborts with Death Star
Honest setting, no identifiable aborts (≈ σ

√
T d)

Figure 3: Norm of x =
∑

i∈[T] xi, for σ = 1, dimension n = 4096, λ = 128 bits of security,
and 1 ≤ T ≤ 1000.



Conclusion



Approach Size Speed Rounds Comm/party IA/Robust DKG

[DKM+24] ≈10 KB O(T) 3 40 KB No No

[EKT24] ≈10 KB O(T) 2 300 KB No No

[ENP24] ≈10 KB O(T) 4 56 · T KB Yes Yes

“Death Star” ≈10 KB O
(N
T
)

3 20 KB Yes Yes
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