
Lattice-Based
Threshold Signatures:
Into The Raccoonverse

Thomas Prest (joint work w/ PQShield & friends)

November 6, 2024



Lattice
Signatures



Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace )
Similar design also found in [ASY22, GKS24]



Lattice signatures

Hash‐&‐Sign Fiat‐Shamir

Convolution Eagle [YJW23] G+G [DPS23]
Rejection sampling Phoenix [JRS24] Dilithium [LDK+22]
Noise flooding Plover [EEN+24] Raccoon [dEK+23]

Easier to
thresholdize More

compact

This talk: focus on Raccoon
Masking‐friendly [dPKPR24] and threshold‐friendly [DKM+24]
NIST PQC candidate [dEK+23], 2023‐2024 (RIP in peace )
Similar design also found in [ASY22, GKS24]



Raccoon: Schnorr over lattices
Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)
1 w′ = gz · vk−c
2 Assert H(w′,msg) = c



Security of Raccoon
Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Raccoon is EUF‐CMA assuming:
1 Hint‐MLWE [KLSS23]
2 Self‐target MSIS [KLS18]

Hint‐MLWE assumption
(A,vk) is pseudorandom even if given
Q “hints”:

(ci, zi = ri + ci · sk), i ∈ [Q] (1)

Note. Hint‐MLWE ≥MLWEσ if:

σr ≥ ∥c∥ ·
√
Q · σ (2)



Threshold
Cryptography



Why threshold cryptography?

Devices can be compromised by...
Malwares
Zero‐day exploits
Human error
...

Devices can be made out of order by...
Network or energy failure
Attack on the infrastructure
Destruction
...



The solution is redundancy

Key idea: distribute trust across several devices

Attacker: how many
devices to compromise?

Attacker: how many
devices to destroy?

1 device 1 key 1 / 1 1 / 1

N devices 1 key 1 / N N / N

N devices N keys N / N 1 / N

N devices T‐out‐of‐N keys T / N (N ‐ T + 1) / N

The two last solutions fall under threshold cryptography
Main focus of the NIST MPTC programme (see Luis’ talk tomorrow)
Reminiscent of masking, but key differences in the attack model and properties



How design choices impact properties

Design choices Size

Speed

Rounds

Communication

Robustness

Identifiable Aborts

Distributed Key
Generation (DKG)

Properties and
efficiency metrics



How design choices impact properties

Design choices Size

Speed

Rounds

Communication

Robustness

Identifiable Aborts

Distributed Key
Generation (DKG)



Model

Communication
Authenticated, reliable & synchronous
broadcast channel
Each i and j may share an authenticated
private channel (via AEAD)

Syntax
One public key vk
Each user i has a secret key share ski
Signing is an interactive protocol
between |S| signers

Our protocols are 3‐4 rounds
(|S| < T)⇒ ⊥
(|S| = T)⇒ sig a valid signature



Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.



Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.



Design choices

Lattice
Threshold
Signatures

Lightweight
Tools

MPC‐based

FHE‐based

Secret: Short SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Short SS

Secret: Shamir SS,
Randomness: Shamir SS

Paradigm Size Speed Rounds Comm/party

MPC S Slow 15 ≥ 1000 KB

Lightweight S‐M Fast 2‐4 20→ 56 · T KB

FHE M As fast as FHE 2 ≥ 1000 KB

This talk.



Threshold
Raccoon



Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Secret‐sharing a secret a ∈ Zp:
Generate P(x) of degree at most T− 1 such that P(0) = a
Each party i ∈ Zp receives a share aiP(i)



Shamir secret sharing

P(x)

a

−5 −4 −3 −2 −1 1 2 3 4 5

−20

−10

10

20

30

Properties:
With < T shares, a is perfectly hidden
With a set S of T shares, a can be recovered via Lagrange interpolation:

a =
∑
i∈S

λi,S · ai, where λi,S =
∏

j∈S\{i}

j
i− j

(3)



Threshold Schnorr signatures
Sparkle
Each signer i knows a share ski of sk.

Round 1:
1 Sample ri
2 wi = gri
3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∏
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi,S · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

See [BN06, CKM23]
This produces valid Schnorr
signatures:

gz = g
∑

i zi

=
(
g
∑

i ri
)
·
(
gc

∑
i λi,S ·ski

)
= w · vkc

Security: in zi, ri is uniform and
perfectly hides c · λi,S · ski
We commit to wi before revealing it
to avoid ROS attacks
[DEF+19, BLL+22]
Can we transpose this to Raccoon?



First attempt

Insecure Threshold Raccoon
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · λi · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures
(up to slight parameter changes)
Issue: when we consider

zi = ri + c · λi · ski, (4)

ri is small whereas c · λi ·ski is large.
Breaks the security proof
For a fixed i, with enough zi of the
form in (4) one can recover ski

This is the crossroads of the talk
Can we add to each z a value Δi
such that:

1 Any set of < T values Δi is
uniformy random?

2
∑

i∈S Δi = 0?
Lets call (Δi)i∈S a zero‐share.



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

1

1

1

1

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

2

2

2

2

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

3

3

3

3

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

4

4

4

4

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share
1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

5

5

5

5

Users i and j share a symmetric key Ki,j, and generate a freshmi,j = PRF(Ki,j, sid)
each signing session
Each user knows all mi,j’s on their corrresponding row and column



Building a Zero-Share

1

1

2

3

4

5

2

1

2

3

4

5

3

1

2

3

4

5

4

1

2

3

4

5

5

1

2

3

4

5

m1,1

m2,1

m3,1

m4,1

m5,1

m1,2

m2,2

m3,2

m4,2

m5,2

m1,3

m2,3

m3,3

m4,3

m5,3

m1,4

m2,4

m3,4

m4,4

m5,4

m1,5

m2,5

m3,5

m4,5

m5,5

m∗
1

=

+

+

+

+

m∗
2

=

+

+

+

+

m∗
3

=

+

+

+

+

m∗
4

=

+

+

+

+

m∗
5

=

+

+

+

+

m1=+ + + +

m2=+ + + +

m3=+ + + +

m4=+ + + +

m5=+ + + +

+

+

+

+

+

+

+

+ =

=

m

1

1

2

2

3

3

(Δ1, . . . ,ΔT), where each Δi = mi −m∗
i , is a secret‐sharing of 0

For each (i, j), the mask mi,j remains secret if i and j are not corrupted



Second attempt
Threshold Raccoon

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2: Broadcast wi

and signature of view of Round 1

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 Δi =

∑
j (mj,i −mi,j)

4 zi = ri + c · λi · ski +Δi
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures:

z =
∑
i∈S

zi + Δi

=
∑
i∈S

(ri + c · λi · ski + Δi)

= c · sk+
∑
i∈S

ri

This negates the previous attack

One last thing: we sign the view of
Round 1 to avoid a fork attack

In [KRT24], the PRF is tweaked so
that no signature is needed

We can prove security under MSIS
and Hint‐MLWE



Second attempt
Threshold Raccoon

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2: Broadcast wi
and signature of view of Round 1
Round 3:

1 w =
∑

iwi
2 c = H(vk,msg,w)
3 Δi =

∑
j (mj,i −mi,j)

4 zi = ri + c · λi · ski +Δi
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures:

z =
∑
i∈S

zi + Δi

=
∑
i∈S

(ri + c · λi · ski + Δi)

= c · sk+
∑
i∈S

ri

This negates the previous attack
One last thing: we sign the view of
Round 1 to avoid a fork attack

In [KRT24], the PRF is tweaked so
that no signature is needed

We can prove security under MSIS
and Hint‐MLWE



Second attempt
Threshold Raccoon

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2: Broadcast wi
and signature of view of Round 1
Round 3:

1 w =
∑

iwi
2 c = H(vk,msg,w)
3 Δi =

∑
j (mj,i −mi,j)

4 zi = ri + c · λi · ski +Δi
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

This gives valid Raccoon signatures:

z =
∑
i∈S

zi + Δi

=
∑
i∈S

(ri + c · λi · ski + Δi)

= c · sk+
∑
i∈S

ri

This negates the previous attack
One last thing: we sign the view of
Round 1 to avoid a fork attack

In [KRT24], the PRF is tweaked so
that no signature is needed

We can prove security under MSIS
and Hint‐MLWE



Final observations for Threshold Raccoon

Sizes: about 10 KB
Speed: very fast (bottleneck is generating T pseudorandom vectors per user)
Rounds: 3 rounds

Reduced to 2 in [EKT24, BKL+24], but communications increases by a factor×10
Communication: 40 KB per user
Distributed key generation: ?
Robustness or IA: How do we check the computation PRF(Ki,j, sid)?

Further reading:
del Pino, Katsumata, Maller, Mouhartem, Prest, Saarinen. Threshold Raccoon: Practical
Threshold Signatures from Standard Lattice Assumptions. EUROCRYPT 2024 [DKM+24]

Espitau, Katsumata, Takemure. Two‐Round Threshold Signature from Algebraic One‐More
Learning with Errors. CRYPTO 2024 [EKT24]

Katsumata, Reichle, Takemure. Adaptively Secure 5 Round Threshold Signatures from
MLWE/MSIS and DL with Rewinding. CRYPTO 2024 [KRT24]



Flood and
Submerse



The key technical challenge is to mask a secret (λi · ski) with the randomness ri.

1 Direction 1 (Threshold Raccoon):
The shares of the secret are uniform
The randomness shares ri are short

A uniform zero‐share Δi is added to partial signatures in order to hide λi · ski.

2 Direction 2: Can we make both λi · ski and ri uniform?
Use Shamir secret sharing for both sk and r ⇒ This section

3 Direction 3: Can we make both λi · ski and ri short?
Use short secret sharing for both sk and r ⇒ Next section



Shamir Everywhere
Flood and Submerse

Round 1:
1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi
5 (JriKj)j∈[S] ← Shamir.Share(ri)
6 Encrypt JriKj to each party j

Round 2: Broadcast wi
Round 3:

1 w =
∑

iwi
2 c = H(vk,msg,w)
3 JrKi = ∑

j∈[S]JriKj
4 zi = JrKi + c · ski
5 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S λi· zi)

Similar to [CGJ+99, JL00, AF04]

Security: JrKi is uniform and therefore
hides ski

This protocol can be augmented to
achieve robustness

Adds a complaint round
Adds a V3S (Verifiable Short Secret
Sharing) inspired from
[ABCP23, GHL22]

Lighter than NIZK
Same ideas can be used for DKG



Final observations for Flood-and-Submerse

Sizes: About 12 KB
Speed: Very fast (bottleneck is generating T ciphertext per user)
Rounds: 4 rounds
Communication: 56 · T KB per user
Distributed key generation: Yes
Robustness: Yes

Further reading:
Thomas Espitau, Guilhem Niot, Thomas Prest. Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature from Lattices. CRYPTO 2024 [ENP24]



The Death Star
Algorithm



Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large



Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

Shamir secret sharing:
Share: xi = P(i), where P(0) = x
The shares xi and reconstruction vector λS may be large



Different types of secret sharings

x Share

x1

x2

x3

x4

x5

⟨λS , xS⟩ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 The reconstruction vector λS is short

Example: N‐out‐of‐N sharing where:
x1, . . . , xN−1 ← DN−1σ , and xN = x−

∑
i<N
xi

λS = (1, . . . ,1)
Extensible to T‐out‐of‐N via replicated SS,
requires

( N
T−1

)
shares per party.



Threshold Raccoon with short shares

Threshold Raccoon, short shares
Round 1:

1 Sample short ri
2 wi =

[
A I

]
· ri

3 comi = Hcom(wi,msg,S)
4 Broadcast comi

Round 2:
1 Broadcast wi

Round 3:
1 w =

∑
iwi

2 c = H(vk,msg,w)
3 zi = ri + c · ski
4 Broadcast zi

Combine: the final signature is
(c, z =

∑
i∈S zi)

For simplicity, we consider T = N
Each λi = 1

Identifiable aborts
Each vki =

[
A I

]
· ski is a valid

public key
Therefore each (c, zi) is a valid
partial signature
We get identifiable aborts for free!

Security
ri hides c · ski as both are short
We argue security via Hint‐MLWE



How large is the sum of T vectors?

Consider the sum of T i.i.d. Gaussian vectors xi ← Dnσ.
What can se say about its norm?

X

Figure 1: Average‐case: O(
√
T)

X

Figure 2:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 2
But colluding signers could force the Fig. 1

This will decrease security. Can we do better?



How large is the sum of T vectors?

Consider the sum of T i.i.d. Gaussian vectors xi ← Dnσ.
What can se say about its norm?

X

Figure 1: Average‐case: O(
√
T)

X

Figure 2:Worst‐case: O(T)

Signatures by honest signers would end up in Fig. 2
But colluding signers could force the Fig. 1

This will decrease security. Can we do better?



The Death Star Algorithm

If x← Dnσ, it is well known that™:

1 ∥x∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨x, y⟩ < σ
√
O(λ) ∥y∥ (5)

except with probability ≤ 2−λ



The Death Star Algorithm

If x← Dnσ, it is well known that™:
1 ∥x∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨x, y⟩ < σ
√
O(λ) ∥y∥ (5)

except with probability ≤ 2−λ



The Death Star Algorithm

y
∥y∥

If x← Dnσ, it is well known that™:
1 ∥x∥ is concentrated around its
expected value σ

√
n

2 For any vector y:

⟨x, y⟩ < σ
√
O(λ) ∥y∥ (5)

except with probability ≤ 2−λ



The Death Star Algorithm

y
∥y∥

The Death Star Algorithm
1 For each signer i:

1 If ∥xi∥ ≥ (1+ o(1))σ
√
n, reject i

2 If ⟨xi, yi⟩ ≥ σ
√
O(λ) ∥yi∥, where

yi =
∑

j̸=i xj, reject i

Lemma: for a set of non‐rejected
(xi)i∈[T], the sum x =

∑
i xi satistifes:

∥x∥ ≤ σ · T ·
√
2 log 2 · λ (5)

+ σ ·
√
T · d · (1+ ε) (6)



Comparison with standard approaches

0 200 400
0

10,000

20,000

30,000

T

∥x
∥

Malicious, identifiable aborts, no Death Star (≈ σ T
√
d)

Malicious, identifiable aborts with Death Star
Honest setting, no identifiable aborts (≈ σ

√
T d)

Figure 3: Norm of x =
∑

i∈[T] xi, for σ = 1, dimension n = 4096, λ = 128 bits of security,
and 1 ≤ T ≤ 1000.



Conclusion



Approach Size Speed Rounds Comm/party IA/Robust DKG

[DKM+24] ≈10 KB O(T) 3 40 KB No No

[EKT24] ≈10 KB O(T) 2 300 KB No No

[ENP24] ≈10 KB O(T) 4 56 · T KB Yes Yes

“Death Star” ≈10 KB O
(N
T
)

3 20 KB Yes Yes



Questions?



Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen.
VSS from distributed ZK proofs and applications.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part I, volume 14438 of LNCS, pages
405–440. Springer, Singapore, December 2023.

Masayuki Abe and Serge Fehr.
Adaptively secure feldman VSS and applications to universally‐composable threshold
cryptography.
In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 317–334. Springer,
Berlin, Heidelberg, August 2004.

Shweta Agrawal, Damien Stehlé, and Anshu Yadav.
Round‐optimal lattice‐based threshold signatures, revisited.
In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022, volume 229
of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, and Mehdi
Tibouchi.
Ringtail: Practical two‐round threshold signatures from learning with errors.
Cryptology ePrint Archive, Report 2024/1113, 2024.

Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS.
Journal of Cryptology, 35(4):25, October 2022.



Mihir Bellare and Gregory Neven.
Multi‐signatures in the plain public‐key model and a general forking lemma.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006,
pages 390–399. ACM Press, October / November 2006.

Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive security for threshold cryptosystems.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 98–115. Springer, Berlin,
Heidelberg, August 1999.

Elizabeth C. Crites, Chelsea Komlo, and Mary Maller.
Fully adaptive Schnorr threshold signatures.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of
LNCS, pages 678–709. Springer, Cham, August 2023.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs.
On the security of two‐round multi‐signatures.
In 2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE Computer Society
Press, May 2019.

Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas
Prest, Mélissa Rossi, and Markku‐Juhani Saarinen.
Raccoon.
Technical report, National Institute of Standards and Technology, 2023.



available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and
Markku‐Juhani O. Saarinen.
Threshold raccoon: Practical threshold signatures from standard lattice assumptions.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS,
pages 219–248. Springer, Cham, May 2024.

Rafaël del Pino, Shuichi Katsumata, Thomas Prest, and Mélissa Rossi.
Raccoon: A masking‐friendly signature proven in the probing model.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920 of LNCS,
pages 409–444. Springer, Cham, August 2024.

Julien Devevey, Alain Passelègue, and Damien Stehlé.
G+G: A fiat‐shamir lattice signature based on convolved gaussians.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS, pages
37–64. Springer, Singapore, December 2023.

Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin Sakzad, and Ron
Steinfeld.
Plover: Masking‐friendly hash‐and‐sign lattice signatures.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VII, volume 14657 of LNCS,
pages 316–345. Springer, Cham, May 2024.

Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures


Two‐round threshold signature from algebraic one‐more learning with errors.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 387–424. Springer, Cham, August 2024.

Thomas Espitau, Guilhem Niot, and Thomas Prest.
Flood and submerse: Distributed key generation and robust threshold signature from lattices.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 425–458. Springer, Cham, August 2024.

Craig Gentry, Shai Halevi, and Vadim Lyubashevsky.
Practical non‐interactive publicly verifiable secret sharing with thousands of parties.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of
LNCS, pages 458–487. Springer, Cham, May / June 2022.

Kamil Doruk Gür, Jonathan Katz, and Tjerand Silde.
Two‐round threshold lattice‐based signatures from threshold homomorphic encryption.
In Markku‐Juhani Saarinen and Daniel Smith‐Tone, editors, Post‐Quantum Cryptography ‐ 15th
International Workshop, PQCrypto 2024, Part II, pages 266–300. Springer, Cham, June 2024.

Stanislaw Jarecki and Anna Lysyanskaya.
Adaptively secure threshold cryptography: Introducing concurrency, removing erasures.
In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 221–242. Springer,
Berlin, Heidelberg, May 2000.

Corentin Jeudy, Adeline Roux‐Langlois, and Olivier Sanders.



Phoenix: Hash‐and‐sign with aborts from lattice gadgets.
In Markku‐Juhani Saarinen and Daniel Smith‐Tone, editors, Post‐Quantum Cryptography ‐ 15th
International Workshop, PQCrypto 2024, Part I, pages 265–299. Springer, Cham, June 2024.

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.
A concrete treatment of Fiat‐Shamir signatures in the quantum random‐oracle model.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 552–586. Springer, Cham, April / May 2018.

Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Toward practical lattice‐based proof of knowledge from hint‐MLWE.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 549–580. Springer, Cham, August 2023.

Shuichi Katsumata, Michael Reichle, and Kaoru Takemure.
Adaptively secure 5 round threshold signatures from MLWE/MSIS and DL with rewinding.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS,
pages 459–491. Springer, Cham, August 2024.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai.
CRYSTALS‐DILITHIUM.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022


Yang Yu, Huiwen Jia, and Xiaoyun Wang.
Compact lattice gadget and its applications to hash‐and‐sign signatures.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of
LNCS, pages 390–420. Springer, Cham, August 2023.


	Lattice Signatures
	Threshold Cryptography
	Threshold Raccoon
	Flood and Submerse
	The Death Star Algorithm
	Conclusion
	Questions?

