
Post-Quantum Secure
Me≦aging

Thomas Prest

Graz Security Week 2024

Why secure messaging?

Everyone uses it
Many people try to break it
Fun research topic!

Some popular messaging apps (2024)1

WhatsApp

WeChat

iMessage

Messenger

Telegram

Snap

2 billion

1.3 billion

1.2 billion

1 billion

900 million

800 million

This talk: protocol security
First question: which attack model should we consider?

1Source: Statista. Sources are often private, difficult to check, and exclude certain applications.

Threat Model

Compromising servers via subpoenas (1/2)

See also the FBI infographic2 reproduced in the next slide.

2Link: https://propertyofthepeople.org/document-detail/?doc-id=21114562

https://propertyofthepeople.org/document-detail/?doc-id=21114562

(U//FOUO) FBI’s Ability to Legally Access Secure Messaging App Content and Metadata
(U//LES) As of November 2020, the FBI’s ability to legally access secure content on leading messaging applications is depicted below, including accessible information based on the applicable legal process. Return data
provided by the companies listed below, with the exception of WhatsApp, are actually logs of latent data that are provided to law enforcement in a non-real-time manner and may impact investigation due to delivery
delays.
unclassified // law enforcement sensitive

App
iMessage Line Signal Telegram Threema Viber WeChat WhatsApp Wickr

Information
accessed

Legal Pro-
cess & Ad-
ditional
Details

•Message Content:
Limited

•Subpoena: can ren-
der basic subscriber
information

•18 U.S.C.
§2709(d): can ren-
der 25 days of iMes-
sage lookups to and
from a target num-
ber1

•Pen Register: no
capability1

•Search Warrant:
can render backups
of a target device; if
target uses iCloud
backup, the encryp-
tion keys should also
be provided with con-
tent return; can also
acquire iMessages
from iCloud returns
if target has enabled
Messages in iCloud

•Message Content:
Limited*

•Suspect and/or vic-
tim’s registered infor-
mation (profile image,
display name, email
address, phone num-
ber, LINE ID, date of
registration, etc.)

•Information on usage

* Maximum of seven
days’ worth of speci-
fied users’ text chats
(Only when E2EE has
not been elected and
applied and only when
receiving an effective
warrant; however video,
picture, files, location,
phone call audio and
other such data will not
be disclosed)

•No Mes-
sage Con-
tent

•Date and
time a user
registered

•Last date
of a user’s
connectivity
to the service

•No Mes-
sage Con-
tent

•No contact
information
provided
for law en-
forcement
to pursue a
court order.
As per Tele-
gran’s pri-
vacy state-
ment, for
confirmed
terrorist in-
vectigations,
Telegram
now disclises
IP address
and phone
number to
relevant au-
thorities

•No Message
Content

•Hash of phone
number and
email address,
if provided by
user

•Push/Token, if
push service is
used

•Public Key

•Date (no time)
of Threema ID
creation

•Date (no time)
of last login

•No Message
Content

•Provides ac-
count (i.e.
phone number)
registration
data and IP
address at time
of creation

•Message His-
tory: time,
date, source
number and
destination
number

•No Message
Content

•Accepts preser-
vation letters
and subpoe-
nas, but can-
not provide
records for ac-
counts created
in China

•For non-China
accounts, they
can provide
basic informa-
tion (name,
phone number,
email, IP ad-
dress) which is
retained for as
long as the ac-
count is active

•Message Content:
Limited*

•Subpoena: can ren-
der basic subscriber
records

•Court Order: Sub-
poena return as well
as information like
blocked users

•Search Warrant: Pro-
vides address book
contacts and What-
sApp users who have
the target in their ad-
dress book contacts

•Pen Register: Sent
every 15 minutes,
provides source and
destination for each
message

* If target is using an
iPhone and iCloud
backups enabled,
iCloud returns may
contain WhatsApp
data, to include mes-
sage content

•No Message Content

•Date and time account
created

•Type of decide(s) add
installed in

•Date of last use

•Total number of mes-
sages

•Number of external IDs
(email addresses and
phone numbers) con-
nected to the account,
but not plaintext exter-
nal IDs themselves

•Avatar image

•Limited records of re-
cent changes to account
setting such as adding
or suspending a device
(does not include mes-
sage content or routing
and delivery informa-
tion)

•Wickr Version Number

Subscriber data Message Sender
Receiver Data

Device backup IP address Encryption key(s) Data/time information Registration time data User’s contacts

(U) Prepared by Science and Technology Branch and Operational Technology Division 7 January 2021

1(U//LES) Apple provided logs only identify if a lookup occurred. Apple returns include a disclaimer that a log entry between parties does not indicate a conversation took place. These query logs have also contained errors.

1

Compromising servers via subpoeanas (2/2)
Meta’s transparency report up to December 2023

Meta’s transparency center: https://transparency.meta.com/

https://transparency.meta.com/

Compromising servers via legal pressure
How it started (source: LeMonde):

How it’s going (source: LeMonde): “After the arrest of Pavel Durov,
Telegram’s surge of cooperation with the justice system in France and Belgium”

Compromising users via legal means

USA: Searching electronic devices at ports of entry without a warrant is legal:
See “Border Search of Electronic Devices at Ports of Entry”3

Legality is contested, see “United States v. Sultanov” ruling (July 2024)

Russia: “Yarovaya law”:
Requires phone operators to store SMS, calls and internet traffic for 6 months
Feasibility and status of deployment is unclear

Europe: Routinely proposes to backdoor end‐to‐end encryption or undermine it
(“client‐side scanning”)

See “Proposal for a regulation of the european parliament and of the council laying
down rules to prevent and combat child sexual abuse”4

3https://www.cbp.gov/travel/cbp-search-authority/
border-search-electronic-devices

4https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN

https://www.cbp.gov/travel/cbp-search-authority/border-search-electronic-devices
https://www.cbp.gov/travel/cbp-search-authority/border-search-electronic-devices
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN

Compromising users via technical means
Spyware sold off-the-shelf by companies and hackers

Takeaways and next steps

What we observe

Asynchrony

Conversations can have many
users (dozens or more)
The server should not be trusted
(=⇒ end‐to‐end encryption)
Users can be compromised
Very long sessions (years)
(=⇒ next slide)

Takeaways and next steps

What we observe

Asynchrony
Conversations can have many
users (dozens or more)

The server should not be trusted
(=⇒ end‐to‐end encryption)
Users can be compromised
Very long sessions (years)
(=⇒ next slide)

Takeaways and next steps

What we observe

Asynchrony
Conversations can have many
users (dozens or more)
The server should not be trusted
(=⇒ end‐to‐end encryption)

Users can be compromised
Very long sessions (years)
(=⇒ next slide)

Takeaways and next steps

What we observe

Asynchrony
Conversations can have many
users (dozens or more)
The server should not be trusted
(=⇒ end‐to‐end encryption)
Users can be compromised

Very long sessions (years)
(=⇒ next slide)

Takeaways and next steps

What we observe

Asynchrony
Conversations can have many
users (dozens or more)
The server should not be trusted
(=⇒ end‐to‐end encryption)
Users can be compromised
Very long sessions (years)
(=⇒ next slide)

Some security notions
Forward secrecy (FS) [CCG16, CCD+17, ACD19]:

These epochs remain secure* One member or more is compromised

Post‐Compromise Security (PCS) [CCG16, CCD+17, ACD19]:

One member or more is compromised These epochs remain secure*

Post‐Compromise Forward Security (PCFS) [ACDT20, ACJM20, AJM20]:

≥ 1 member is compromised These epochs remain secure* ≥ 1 member is compromised

Roadmap

How do we obtain a secure messaging protocol that is
simultaneously...

post‐quantum︸ ︷︷ ︸
Part I

+ scalable︸ ︷︷ ︸
Part II

+ metadata‐hiding︸ ︷︷ ︸
Part III

?

Post-Quantum
Security

Achieving post-quantum security

There are two approaches in building a post‐quantum protocol:
Black‐box: provide a generic construction assuming secure building blocks

Symmetric crypto (hash functions, AEAD, etc.)
Key encapsulation mechanisms (KEMs)
Signatures
etc.

White‐box: open and optimize the underlying primitives
In my experience, the best protocols take advantage of both approaches.

Secure messaging, high-level view (2 users)

.

Establish a shared secret key Handshake

Encrypt messages with
Update

Continuous
Key Agreement
(CKA)

Post‐quantum instantiations:
Handshake: KEM + (ring) signatures + symmetric crypto [HKKP21, BFG+22]
Continuous Key Agreement (CKA): KEM + symmetric crypto [ACD19]

.

Establish a shared secret key Handshake

Encrypt messages with
Update

Continuous
Key Agreement
(CKA)

CKA: sending application messages

Assume both parties share a secret symmetric key
Application messages may be sent using an AEAD
More advanced functionalities (abuse reporting aka message franking) may
require more specific properties (context committing [DGRW18])

.

Establish a shared secret key Handshake

Encrypt messages with
Update

Continuous
Key Agreement
(CKA)

CKA: achieving forward secrecy (“symmetric ratchet”)

A compromised shall not allow to recover prior messages
After each message, is locally updated by feeding it into a PRF

+ +

.

Establish a shared secret key Handshake

Continuous
Key Agreement
(CKA)

CKA: achieving post‐compromise security (“asymmetric ratchet”)
A compromised shall not allow to recover future messages

Each user has a KEM keypair
updates her cryptographic material as follows:

1 Generate a new KEM keypair and randomness
2 Update with randomness
3 Send new encryption key () + encrypted randomness () to

Both and are able to derive the updated

Is it deployed? Yes!

June
2022

June
2023

Sept.
2023

Febr.
2024

NIST announces
PQC standards

IETF
standardises

MLS

Signal deploys
PQXDH

Apple deploys
PQ3

MLS: post‐quantum ready
PQXDH: post‐quantum handshake, classical double ratchet
PQ3: post‐quantum handshake, post‐quantum double ratchet*
Next step: scalability

Scalability

This section: bandwidth efficiency

1 Bandwidth likely to be a bottleneck of PQ messaging, due to three factors:
1 Mobile data plans
2 Post‐quantum primitives
3 Continuous group key agreement (CGKA) protocols

2 Existing CGKAs can incur high bandwidth consumption
The bottleneck is in the public‐key cryptography

3 Propose a bandwidth‐efficient CGKA

Howmuch does 1 GB of mobile data cost?

Median
cost:
≤ $0.50

≤ $1.00

≤ $5.00

≥ $5.00

Data extracted from a Cable.co.uk study [Cab23]. Notes:
Small data plans are common in many countries.
Reaching data caps significantly impacts UX.

Further observations

These observations will guide our design choices:

Uploading and downloading data typically have the same monetary cost

We expect speed to impact UX for application messages but not CGKA:
Application messages are visible
CGKA is invisible (ideally)

Complete data on worldwide mobile speed:
https://www.speedtest.net/global-index

Large groups require more frequent key updates
Over 1 day, suppose each user gets compromised with probability ε.
Over T days, a group with N users remains uncompromised with probability

(1− ε)N·T ≤ exp (−ε · N · T)

But existing CGKA may require high bandwidth (next slides)

https://www.speedtest.net/global-index

Naive CGKA – pairwise channels

Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer

(N‐1)× (+ +)

+
+

+
+

+
+
+

+

Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer

(N‐1)×

Insider view

Sending a single picture () of 100 Kilobytes with N = 256:
25.5 Megabytes for the sender, 100 kB for each downloader

MLS’ CGKA – TreeKEM

The N users are arranged as the leaves of a (binary) tree
Tree invariants:

1 All users know the public keys of all nodes in the tree
2 (user knows the private key of node)⇔ (node is in the path of user)

Application messages: All users use the root private key

MLS’ CGKA – TreeKEM

The N users are arranged as the leaves of a (binary) tree
When a user (here) updates their key, they broadcast:

logN encryption keys ()
logN ciphertexts ()
> Each ciphertext encrypts to its sibling node the private key of their parent node

2 signatures () – one for encryption keys, one for ciphertexts

What if we use a flat tree?

This is essentially Chained mKEM [BBN19]
The tree invariant remains identical (and simpler)

When a user (here) updates their key, they broadcast:
1 encryption key () N− 1 ciphertexts () 2 signatures ()

At first glance, less efficient than TreeKEM!
Can we improve efficiency?

What if we use a flat tree?

This is essentially Chained mKEM [BBN19]
The tree invariant remains identical (and simpler)
When a user (here) updates their key, they broadcast:

1 encryption key () N− 1 ciphertexts () 2 signatures ()

At first glance, less efficient than TreeKEM!
Can we improve efficiency?

Flat tree + lazy download

Lazy downloading:
Users only download what they need, i.e. user j only need the j‐th ciphertext
How do we keep signatures consistent with only partial information?
Imperfect solutions

One signature per ciphertext→ costly
Merkle tree→ better but same asymptotic cost as TreeKEM

Flat tree + lazy download + implicit consistency

Lazy downloading:
Users only download what they need, i.e. user j only need the j‐th ciphertext
How do we keep signatures consistent with only partial information?
Solution: sign the epoch’s confirmation tag (derived from and public view)

Idea implicit in [HKP+21, Footnote 5], explicit in [AHKM22]
[HKP+21] also used committing mPKE, but this is not necessary

Our proposed protocol
One channel: a single shared secret for the whole group

Sending application messages is cheap
One signature:

A single signature authenticates the encryption key & all ciphertexts
Compatible with lazy downloading

Our proposed protocol
One channel: a single shared secret for the whole group

Sending application messages is cheap
One signature:

A single signature authenticates the encryption key & all ciphertexts
Compatible with lazy downloading

+ +

+
+ +
+

+ +

+
++
+

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

Bandwidth costs for a group of size N

Scheme Application
message

Update
(upload)

Update
(download)

Update
(total)

Pairwise channels O(N) O(N) O(1) O(N)

TreeKEM (MLS) O(1) O(log N)∗ O(log N)∗ O(N log N)∗

Our protocol O(1) O(N)† O(1) O(N)

*Best‐case complexity
†With multi‐recipient KEMs, we gain a factor 16 in the O() constant.

Metadata
Protection

Metadata collection is systemic

“ Metadata, however, showing how
a WhatsApp account was used and
which numbers were contacting one
another and when, can be tracked
with a surveillance technology known
as a pen‐register. PenLink provides
that tool as a service. ”

Metadata collection, in more details

iMessage Line Signal Telegram Threema Viber WeChat WhatsApp
Subscriber data
Message sender,
receiver data
IP address
Date/time
information
User contacts

Scope of this section

Wewant to hide that user X is sending information to G ∋ X
Assumption: X shares a secure (user‐side) anonymous connection with the
server
Solutions exist (Signal’s Private Groups System) but they are not post‐quantum
Outside the scope: Server‐side inference based on relations between groups

Initial protocol
(= encryption key, = ciphertext, = signature)

+ + (N‐1)×

+
+ +
+

+ +

+
++
+

Messages are confidential, but notmetadata ()

Use client-anonymous authenticated channels

+ + (N‐1)×

+
+ +
+

+ +

+
++
+

The packages , , leak the identities

OK, then let’s also encrypt all the packageswith

+ + (N‐1)×

+
+

+
+

+ +

+
+

+
+

Nowanyone can upload garbagemessages to the group!

Let’s encrypt all packages except the signature

+ + (N‐1)×

+
+

+
+

+ +

+
+

+
+

But each signature is linked to its sender

Solution: derive a signature keypair (,) from
The verification key is public, but only users know the signing key
Group members can authenticate themselves anonymously

+ + (N‐1)×

+
+

+
+

+ +
+

+

+
+

,

Further reading

Scalability:
Kwiatkowski, Katsumata, Pintore, Prest: Scalable Ciphertext Compression Techniques for
Post‐Quantum KEMs and their Applications. ASIACRYPT 2020. [KKPP20]
Hashimoto, Katsumata, Postlethwaite, Prest, Westerbaan: A Concrete Treatment of
Efficient Continuous Group Key Agreement via Multi‐Recipient PKEs. CCS 2021. [HKP+21]

Metadata protection:
Hashimoto, Katsumata, Prest: How to Hide MetaData in MLS‐Like Secure Group Messaging:
Simple, Modular, and Post‐Quantum. CCS 2022. [HKP22]

Other:
The presentation is on my website: https://tprest.github.io
White paper “Secure Messaging in a Post‐QuantumWorld”, written by Shu and me:
https://content.pqshield.com/secure-messaging-in-a-post-quantum-world
Please come say hi if you are interested in research projects!

https://tprest.github.io
https://content.pqshield.com/secure-messaging-in-a-post-quantum-world

Questions?

Joël Alwen, Sandro Coretti, and Yevgeniy Dodis.
The double ratchet: Security notions, proofs, and modularization for the Signal protocol.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 129–158. Springer, Cham, May 2019.

Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the IETF MLS standard for group messaging.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 248–277. Springer, Cham, August 2020.

Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk.
Continuous group key agreement with active security.
In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages
261–290. Springer, Cham, November 2020.

Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk.
Server‐aided continuous group key agreement.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
69–82. ACM Press, November 2022.

Joël Alwen, Daniel Jost, and Marta Mularczyk.
On the insider security of MLS.
Cryptology ePrint Archive, Report 2020/1327, 2020.

Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg.

Formal Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS.
Research report, Inria Paris, December 2019.

Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post‐quantum asynchronous deniable key exchange and the Signal handshake.
In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, volume
13178 of LNCS, pages 3–34. Springer, Cham, March 2022.

Cable.co.uk.
Worldwide Mobile Data Pricing 2023 | 1GB Cost in 230 Countries, 2023.
https://www.cable.co.uk/mobiles/worldwide-data-pricing/.

K. Cohn‐Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila.
A formal security analysis of the signal messaging protocol.
In 2017 IEEE European Symposium on Security and Privacy (EuroS P), pages 451–466, 2017.

Katriel Cohn‐Gordon, Cas J. F. Cremers, and Luke Garratt.
On post‐compromise security.
In Michael Hicks and Boris Köpf, editors, CSF 2016 Computer Security Foundations Symposium,
pages 164–178. IEEE Computer Society Press, 2016.

Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 155–186. Springer, Cham, August 2018.

https://www.cable.co.uk/mobiles/worldwide-data-pricing/

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.
An efficient and generic construction for Signal’s handshake (X3DH): Post‐quantum, state
leakage secure, and deniable.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 410–440. Springer, Cham,
May 2021.

Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas
Westerbaan.
A concrete treatment of efficient continuous group key agreement via multi‐recipient PKEs.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1441–1462. ACM Press,
November 2021.

Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest.
How to hide MetaData in MLS‐like secure group messaging: Simple, modular, and
post‐quantum.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
1399–1412. ACM Press, November 2022.

Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest.
Scalable ciphertext compression techniques for post‐quantum KEMs and their applications.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS,
pages 289–320. Springer, Cham, December 2020.

	Threat Model
	Post-Quantum Security
	Scalability
	Metadata Protection
	Questions?

