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Secure messaging applicaঞons are widespread...
WhatsApp 2.5 Billions
Facebook Messenger 1.3 Billions
Telegram 500 Millions
Snapchat 280 Millions

...and represent a�racঞve targets for a�ackers:
 “Al Jazeera journalists ‘hacked via NSO Group spyware’”, BBC, 2020
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Constraints

Specific constraints:
 Asynchrony

 Minimise trust in the server
(=⇒ end-to-end encrypঞon)

 Large number of users (N≫ 1)
 Very long sessions (t≫ 1)

  













If each user has a probability ϵ of being compromised by an a�acker during a unit of
ঞme, a group conversaঞon with N members over t units of ঞme will be compromised
with probability 1− (1− ϵ)Nt.
 This probability is significant as soon as Nt = Ω(1/ϵ).
 Soluঞon: periodically refresh encrypঞon keys (next slides).
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Some security notions

Forward secrecy (FS) [CCG16, CGCD+17, ACD19]:

These epochs remain secure* One member or more is compromised

Post-Compromise Security (PCS) [CCG16, CGCD+17, ACD19]:

One member or more is compromised These epochs remain secure*

Post-Compromise Forward Security (PCFS) [ACDT20, ACJM20, AJM20]:

One member or more is compromisedThese epochs remain secure*One member or more is compromised



CGKAs

CGKAs (Conࢼnuous Group Key Agreement) concentrate the cryptographic mechanisms
of secure gorup messaging protocols:
 Add a user
 Remove a user
 Remove one’s encrypঞon keypair (Ratcheࢼng/Commit Message)

Prominent CGKAs:
 Pairwise Channels (Signal)
 Sender Keys (WhatsApp)
 TreeKEM [BBR18, Wei19, BBN19, ACDT20, AJM20, ACJM20, ACC+21] (IETF
MLS dra[ standard [OBR+21, BBM+20])

 Chained mKEM [BBN19]



Chained mKEM

       

      

TreeKEM

       

 

In Chained mKEM and TreeKEM:
 To each node ( , ) is associated an encrypঞon keypair
 A user knows the decrypঞon key of a node if and only if this node is in their
path (i.e. the node is an ancestor of the user’s node)

 A commit message (here, sent by the le[most user) contains:
 an encrypঞon key for each
 an asymmetric ciphertext for each
 two signatures (one that authenঞcates encrypঞon keys, one that authenঞcates
ciphertext)

Therefore it has a size O(N) for Chained mKEM, and Ω(logN) for TreeKEM.
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A change of epoch (t− 1) −→ t

initSecret(t−1) joinerSecret(t) initSecret(t)

confKey(t)appSecret(t) membKey(t)

comSecret(t)

TreeKEM Chained mKEM



The larger a group size N is, the more commit
messages:
 are necessary
 are costly

This tension is amplified by:
 the cost and impact for end users
 post-quantum cryptography (×10 or more
compared to classical cryptography).
Example with:

 TreeKEM
 Classic McEliece [ABC+20]
 256 users

If each user sends one commit message, the
bandwidth cost if 512 MiB per user.

(1)
1https://www.visualcapitalist.com/cost-of-mobile-data-worldwide/

https://www.visualcapitalist.com/cost-of-mobile-data-worldwide/


Our solution

Chained CmPKE, un CGKA avec un coût asymétrique en
envoi et récepঞon (de commit message):

Upload Download Total

Chained CmPKE O(N) O(1) O(N)
TreeKEM Ω(logN) Ω(logN) Ω(N logN)

Conceptually, the main change of Chained CmPKE is to make
the server more acঞve (but without entrusঞng it more).

 















Technically, Chained CmPKE is based on Chained mKEM, with two new ideas:
1 Use very efficient mPKEs (mulࢼ-recipient PKE) ⇒ reduce upload costs
2 The use of CmPKE (commi࣌ng mPKE)⇒ a cost O(1)



Ingredient №1:
Commi࣌ng mPKEs



Committing mPKEs

Syntax of a mPKE (mulࢼ-recipient PKE):
 mEnc(M, (eki)i∈[N])→ (ct0, (ĉti)i∈[N])
 mDec(dki, (ct0, ĉti))→ {M or ⊥}
Recently revisited in [KKPP20], which inspired this work.

The syntax of a CmPKE (commi࣌ng mPKE) is idenঞcal:
 CmEnc(M, (eki)i∈[N])→ (T, (cti)i∈[N])
 CmDec(dki, (T,cti))→ {M or ⊥}
In addiঞon, we require that T is commi࣌ng, i.e. T is bound to a unique message M. A
related noঞon: commi࣌ng AEADs [GLR17]

We provide an (mPKE IND-CPA⇒ CmPKE IND-CCA) transform, with:
 cti = ĉti.
 T = (ct0, c) and |c| = 32 bytes.
Our transform uses key-commi࣌ng AEADs [FOR17, GLR17, ADG+20].



Impact of CmPKEs

In Chained mKEM, a commit message contains:
1 A new encrypঞon key ek
2 An mPKE ciphertext: (ct0, (ĉti)i∈[N])
3 A signature sig1 ← Sign(sk,ek)
4 A signature sig2 ← Sign(sk, (ct0, (ĉti)i∈[N]))

In Chained CmPKE, a commit message contains:
Upload:
1 ek
2 A CmPKE ciphertext: (T, (cti)i∈[N])
3 sig1 ← Sign(sk,ek)
4 sig2 ← Sign(sk,T)

Download:
1 ek
2 (T,cti)
3 sig1
4 sig2

Intuiঞvely, any a�empt from the server to tamper with T or cti is detected upon
signature verificaঞon or during decrypঞon.



Ingredient №2:
more efficient
mPKEs



Post-quantummPKEs

[KKPP20] highlighted the existence of very efficient mPKEs based on LWE, LWR and
SIDH. Exemple with LPR-style schemes [LPR10, LP11]:

Enc(ek = B,M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

=⇒

mEnc({ek1, . . . ,ekN},M)

1 Sample short matrices R,E′

2 U← RA+ E′
3 For i = 1, . . . ,N:

1 Sample a short matrix E′′
i

2 Vi ← RBi + E′′
i + Encode(M)

4
(
ct0, (ĉti)i∈[N]

)
:=

(
U, (Vi)i∈[N]

)
Limitaঞons of [KKPP20]:
 Naive parametrisaঞons
 No concrete security analysis
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ct0, (ĉti)i∈[N]

)
:=

(
U, (Vi)i∈[N]

)
Limitaঞons of [KKPP20]:
 Naive parametrisaঞons
 No concrete security analysis



Nouveaux mPKEs à base de réseaux

We propose three re-parametrisaঞons of laমce-based (m)PKEs:

BilboKEM640 (inspired
form FrodoKEM640)

Ilum512 (inspired from
Kyber512) LPR757 (inspired from NTRU

LPR653)

These mPKEs are tailored for the Chained CmPKE protocol:
 The (ĉti)i∈[N] are extremely small
 This entails a small increase of the sizes of ek and ct0



Recall that M = Decode(Vi − dki · U). Our toolkit:
 Bit dropping: cut the least significant bits of Vi

 Reduces the size of Vi, increases the LWEv error rate
 Increases the decrypࢼon failure rate

 Coefficent dropping: cut superflous coefficients of V
 Reduces the size of Vi
 None!

 Increase the modulus q
 Allows to pack more bits of key per coefficient of Vi
 Increases the size of U, reduces the LWE error rate

 Error correcঞng codes (discarded opঞon)
 Reduces the decrypঞon failure rate
 Timing a�acks, delicate security analysis [DVV19, GJY19, DTVV19]

The main a�acks to (re-)consider:

LWE

Decoding Primal laমce Dual laমce Arora-Ge BKW

Finite number of samples Arbitrary number of samples



Communicaঞon costs of mPKEs based on exisঞng ( gray background ) and new (fond
blanc) parametrisaঞons. Sécurité: NIST I (≥ AES-128).

Schéma |ek| |ct0| |ĉti|
Kyber512 [SAB+20] 768 (+32) 640 128
Ilum512 768 704 48
LPRime653 [BBC+20] 865 (+32) 865 (+32) 128
LPRime757 1076 1076 32
Frodo640 [NAB+20] 9600 (+16) 9600 120
Bilbo640 10240 10240 24
SIKEp434 [JAC+20] 330 330 16



Comparisons &
Conclusion



Chained CmPKE vs TreeKEM (upload and download)

Size of a commit message in KiB as a funcঞon of the group size.
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Chained CmPKE vs TreeKEM (total normalised by N)

Normalised cost of a commit message in KiB as a funcঞon of the group size.
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Computational cost of a commit message
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Running ঞme of some procedures as a funcঞon of the group size, for Ilum512 ( ),
LPRime757 ( ), Bilbo640 ( ), SIKEp434 ( ). Logarithmic scales. Timings ob-
tained on an Apple M1 @3.2 GHz.



Conclusion

We proposed Chained CmPKE, a CGKA that is:
 Very fast
 More compact than TreeKEM: O(N) instead of Ω(N logN)
 Simpler than TreeKEM
 Saঞsfying the same security noঞons (see paper)

As well as techniques that might be of independent interest:
1 Commi࣌ng mPKEs
2 More efficient laমce-based mPKEs
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