

Rafael del Pino PQShield Thomas Espitau PQShield Shuichi Katsumata PQShield AIST

Mary Maller

PQShield Ethereum Foundation

> Mélissa Rossi ANSSI

Fabrice Mouhartem CryptPad Thomas Prest PQShield

Markku-Juhani Saarinen

PQShield Tampere University

Motivation

Signature schemes strike a balance between:

- Sizes (verification key and signatures)
- ✤ Speed (signing, verification)
- 🏨 Portability
- Conservative assumptions
- 💖 Resistance against side-channel attacks

And so on...

Criteria	1	*	1	>	~
Dilithium	**1	***	***	**	•
Falcon	***	***	**	**	6
SPHINCS+	*1	**	**	***	67
Raccoon	**	***	***	**	***

Side-channel attacks in cryptography

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]

In Falcon, a signature **sig** is distributed as a Gaussian.

The signing key **sk** should remain private.

The power consumption leaks information about the dot product $\langle sig, sk \rangle$, or sk itself.

Figure 1: Flowchart of the signature

¹FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]

"SHIELD

In Falcon, a signature ${\bf sig}$ is distributed as a Gaussian.

The signing key **sk** should remain private.

The power consumption leaks information about the dot product (sig, sk), or sk itself.

Figure 1: Flowchart of the signature

²Improved Power Analysis Attacks on Falcon [ZLYW23]

t-probing model

Adversary can probe t circuit values at runtime
 Unrealistic but a good starting point

Masking

Lach sensitive value x is split in *d* shares:

$$[\![x]\!] = (x_0, x_1, \dots, x_{d-1}) \tag{1}$$

such that

$$x_0 + x_1 + \dots + x_{d-1} = x \tag{2}$$

In t-probing model, ideally 0 leakage if d > t
 In "real life", security is exponential in d
 What about computations?

Remember this puzzle?

" A farmer with a wolf, a goat, and a cabbage must cross a river by boat. The boat can carry only the farmer and a single item. If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage. How can they cross the river without anything being eaten? "

"SHIELD

Remember this puzzle?

" A farmer with a wolf, a goat, and a cabbage must cross a river by boat. The boat can carry only the farmer and a single item. If left unattended together, the wolf would eat the goat, or the goat would eat the cabbage. How can they cross the river without anything being eaten? "

It gets quickly complicated...

Now replace:

- **1** The set { farmer, wolf, goat, cabbage } by the shares (x_0, \ldots, x_{d-1})
- 2 The operation "everyone crosses the river" by an arbitrary function $f([x]) \rightarrow [y]$
- 3 The constraints "never leave A alone with B" by "a probing adversary shall not learn anything"
- ... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?

- Addition ([[c]] = [[a + b]])?
 Compute [[c]] = (a₀ + b₀,..., a_{d-1} + b_{d-1}), simple and fast: Θ(d) operations
 Multiplication ([[c]] = [[a ⋅ b]])?
 Complex and slower: Θ(d²) operations
 More complex operations?
 - > Use so-called mask conversions, very slow: $\gg \Theta(d^2)$ operations

PSHIELD

$\mathsf{Keygen}(1^{\lambda}) \to (\mathsf{sk}, \mathsf{vk})$

1 Generate a large matrix $\mathbf{A} = [\mathbf{I} | \bar{\mathbf{A}}] \in \mathcal{R}_q^{k \times (k+\ell)}$

- 2 Generate a short secret s
- Ompute t = A ⋅ s
- 4 Verification key vk = (A, t)

⊳ No mask

⊳ Slow

⊳ Fast

⊳ No mask

⊳ No mask

When masking this algorithm, the bottleneck is sampling **s** (2):

- ightarrow Concretely, start with boolean masking, then apply B2A conversions
- → Total masking overhead: $O(d^2 \log q)$

We show that **s** retains a large amount of randomness **even in the presence of a probing adversary**.

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s, vk = s)	$(\textbf{A},\textbf{t}), \textsf{msg}) \rightarrow \textsf{sig}$
----------------------	---

- 1 Generate a short ephemeral secret **r**
- 2 Compute the commitment $\mathbf{w} = \mathbf{A} \cdot \mathbf{r}$
- **6** Compute the challenge $c = H(\mathbf{w}, \mathsf{msg}, \mathsf{vk})$
- 4 Compute the response $\mathbf{z} = \mathbf{s} \cdot \mathbf{c} + \mathbf{r}$
- **6** Check that **z** is in a given interval. If not, restart.
- **6** Signature is $sig = (c, \mathbf{z})$

Masking bottlenecks:

- 69 Short secret generation (1) requires B2A.
- Rejection sampling (5) requires A2B and B2A.

Total masking overhead: $\Theta(d^2 \log q)$

⊳ Slow

⊳ Fast

⊳ No mask

⊳ Fast

⊳ Slow

$\mathsf{Sign}(\mathsf{sk} = [\![\textbf{s}]\!], \mathsf{vk} = (\textbf{A}, \textbf{t}), \mathsf{msg}) \to \mathsf{sig}$

- Generate a masked short ephemeral secret **[r]** using "AddRepNoise" ▷ Fast
- **2** Compute the commitment $[w] = A \cdot [r]$
- 🔞 Unmask [**[w**]] to obtain **w**
- Compute the challenge $c = H(\mathbf{w}, \mathsf{msg}, \mathsf{vk})$
- **6** Compute the response $[\mathbf{z}] = [\mathbf{s}] \cdot c + [\mathbf{r}]$
- 🙆 Unmask [[**z**]] to obtain **z**
- (No more rejection sampling!)

```
8 Signature is sig = (c, \mathbf{z})
```

Total masking overhead: $O(d \log d)$

▷ Fast▷ Fast

⊳ No mask

⊳ Fast

⊳ Fast

Impact on the modulus

Impact on the modulus

 $m{0}$ Removing rejection sampling increases $\|m{r}\|/\|m{s}\|$ from $\Theta(\dimm{s})$ to $\Theta\left(\|c\|\sqrt{ ext{Queries}}
ight)$

Impact on the modulus

Removing rejection sampling increases ||r||/||s|| from Θ(dim s) to Θ (||c||√Queries)
 The increased q in turn requires increasing ||s||, q/||r|| and/or the dimensions.

Raccoon is a specific-purpose scheme aimed at high side-channel resistance:

- ☺ Same assumptions as Dilithium
- 🙂 Simpler
- Verification key size is similar
- 😟 Signature is 4x larger
- (2) When masked, orders of magnitude faster than other schemes are

Dmitri Asonov and Rakesh Agrawal.

Keyboard acoustic emanations.

In 2004 IEEE Symposium on Security and Privacy, pages 3–11. IEEE Computer Society Press, May 2004.

Wim Van Eck.

Electromagnetic radiation from video display units: An eavesdropping risk? *Computers & Security*, 4:269–286, 1985.

Emre Karabulut and Aydin Aysu.

FALCON down: Breaking FALCON post-quantum signature scheme through side-channel attacks.

In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021, pages 691–696. IEEE, 2021.

- Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
 Differential power analysis.
 In Michael J. Wiener, editor, CRYPTO'99, volume 1666 of LNCS, pages 388–397.
 Springer, Heidelberg, August 1999.
- Paul C. Kocher.

Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.

In Neal Koblitz, editor, *CRYPTO'96*, volume 1109 of *LNCS*, pages 104–113. Springer, Heidelberg, August 1996.

- Markku-Juhani O. Saarinen and Mélissa Rossi. Mask compression: High-order masking on memory-constrained devices. Cryptology ePrint Archive, Paper 2023/1117, 2023. https://eprint.iacr.org/2023/1117.
- Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power analysis attacks on falcon. Cryptology ePrint Archive, Paper 2023/224, 2023. https://eprint.iacr.org/2023/224.