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Motivation

Signature schemes strike a balance between:
2 Sizes (verification key and signatures)
" Speed (signing, verification)

18 Portability
/% Conservative assumptions
%" Resistance against side-channel attacks

And so on...
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Side-channel attacks in cryptography

Power consumption [KJJ99]

~

Timing measurement [Koc?6]
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Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.
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Figure 1: Flowchart of the signature
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LEALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel Attacks [KA21]



Example with Falcon ‘"SHIELD

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product (sig, sk), or sk itself.
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2Improved Power Analysis Attacks on Falcon [Z1Y\W23]



Masking and the t-probing model

t-probing model
8 Adversary can probe t circuit values at runtime
sfs Unrealistic but a good starting point

Masking
o5 Each sensitive value x is split in d shares:
[x] = (0, X1, - -+ s Xa—1) (1)
such that
X0+ X1+ Xgo1 =X (2)

& In t-probing model, ideally O leakage if d >t
& In “real life”, security is exponential in d
©Z What about computations?




Interlude: river-crossing puzzles ’“SHIE[I]

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”
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Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”
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Search Tree for “Farmer, Wolf, Duck, Corn”

It gets quickly complicated...



From river-crossing to masking

Now replace:
@ The set { farmer, wolf, goat, cabbage } by the shares (xg, . .., X4_1)
@ The operation “everyone crosses the river” by an arbitrary function f([x]) — [v]
© The constraints “never leave A alone with B" by “a probing adversary shall not learn
anything”
... and you obtain an inexhaustible source of headaches for cryptographers.



From river-crossing to masking

Now replace:
@ The set { farmer, wolf, goat, cabbage } by the shares (xg, . .., X4_1)
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How difficult are operations to mask?

© Addition ([c] = [a + b])?
> Simple and fast: ©(d) operations

© Refresh ([a] — [a])?
> Protect against attacks and allows composition frameworks (SNI, PINI, 10S, etc.)
> Simple and fast: ©(dlogd) operations

& Multiplication ([c] = [a - b])?
> Complex and slower: ©(d?) operations

@ More complex operations?
> Use so-called mask conversions, very slow: O(d?) operations per bit to convert






Masking Dilithium step-by-step

Dilithium-Sign

@ Sample r < Uniform(S)
A w:=Ar

O wr = |w]y

O c:=H(wt,msg)

O z:=sc+r

O Ifznotin$, goto @

@ h:=wr — |Az—tc];
© Output sig = (¢, z,h)




Masking Dilithium step-by-step

Dilithium-Sign

@ Sample r < Uniform(S)

O w:=Ar

O wr = |wjy

O c:= H(wT,msg)
O z:=sc+r

O Ifznotin$, goto @
@ h:= Wt — LAZ—tC—|k
© Output sig = (¢, z,h)

@ How do we sample a uniform d-sharing [r]
of r < Uniform(S) securely?

2 S=17jiseasy,S < Zg is hard
= Naive solutions do not work

= Best known method:

@ Find a boolean circuit f that samples
(r1,...,MNogq) < Uniform(S)
@ Evaluate f in masked boolean form:

(Iralbs -+ [rogals) < [fle  (3)
@ Use mask conversion on each bit:

[rils — [ri]a (4)

@ Recombine the masked bits:

[ o =>_ 2 [ (5)

Complexity: O (d? (|f| +logq))



Masking Dilithium step-by-step

Dilithium-Sign

@ Sample r < Uniform(S)

@ w:=Ar

@ wr = [w],

@ c:=H(wT, msg)
O z:=sc+r

O Ifznotin$, goto @
@ h:=wr - |Az—tc],
© Output sig = (¢, z,h)

@ Compute Ar:
-» Linear operation thus easy
= Complexity: O(d)

© Bit dropping wt = W]
= The lower bits of w are sensitive:

w— (Az —tc) =ec

-» Requires mask conversion (B2A + A2B)
=» Complexity: O(d? logq)

@ Challenge computation is unmasked:
=» Previously: ad-hoc assumption [BBE T 18]
= Now: everyone cites [DFPS23]



Masking Dilithium step-by-step

Dilithium-Sign

@ Sample r < Uniform(S)

A w:=Ar

(3] WT (= LW-Ik

O c:=H(wt,msg)
O z:=sc+r

® If znotin S, goto @
@ h:=wr — |[Az—tc]y
© Output sig = (c,z,h)

O Computez=sc+r:
=>» Linear thus fast

O Rejection sampling:
-2 Requires mask conversion (A2B), slow

@ Compute h:
=» Linear thus fast



Masked Dilithium |

Speed (billions of cycles)

0.01

—o— NTT

Dilithium-Sign AT

@ Sampler« S

O w:=Ar > O(d)
(3 WT = LW—|;<

O c:= H(wt,msg) > No mask
O z:=sc+r > O(d)

O Ifznotin$, goto @
@ h:=wr—|Az—tc], © O(d)
© Output sig = (¢, z,h)

Number of shares d



Masked Dilithium |

Speed (billions of cycles)

2 T T
—o— NTT

B

@ Sampler« S —= h

O w:=Ar > O(d) Wk

=— Reject <

O wr = |w], > O(d? log q)

O ¢ := H(wt,msg) > No mask

O z:=sc+r > O(d)

O IfznotinS, goto @ > O(d” logq)

@ h:=wr—|Az—tc], © O(d)

© Output sig = (¢, z,h)

Number of shares d



Masked Dilithium [ "‘SHIE[I]

Speed (billions of cycles)

15 I T
—o— NTT
S
® Sampler« S (cl2 loga) o h
o wik
A w:=Ar O(d) - Reject
O wr = [w] > O(d2 logq) —+— Sample
® c:= H(wT,msg) > No mask —e— Total
©z=sctr O(d) >
O Ifznotin$, goto @ > O(d2 Iog q)
@ h:=wr - |Az—tc], O(d)
© Output sig = (c,z,h) g2 ¢
s 2 4 8 16

Number of shares d



Takeaway ‘"SHIELD

Masking Dilithium efficiently remains difficult despite several years of works:
-» Masking the GLP lattice-based signature scheme at any order [BBE 18]
-» Masking Dilithium - efficient implementation and side-channel evaluation [MGTF19]

=» Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC 23]

=» Improved Gadgets for the High-Order Masking of Dilithium [CGT/23]
None of these works manage to break the ©(d? log q) barrier.


https://tprest.github.io/
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What about Mitaka?

=» Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFGT22]
> Now: A Key-Recovery Attack against Mitaka in the t-Probing Model [Pre2 3]
> Slides and video on https://tprest.github.io/

Mitaka cannot be masked efficiently with existing techniques.
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What about Mitaka?

=» Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFGT22]
> Now: A Key-Recovery Attack against Mitaka in the t-Probing Model [Pre2 3]
> Slides and video on https://tprest.github.io/

Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!


https://tprest.github.io/




Main design principle: be like water ‘"SHIELD

We build a masking-friendly scheme from
scratch:

-» We can completely deviate from
existing schemes and frameworks

-» Only hard constraints are security
and masking-friendliness




Raccoon - masked key generation

Keygen(1") — (sk, vk)

@ Generate a large matrix A = [1|A] € R (H0 > No mask
@ [s] =(0,...,0) o> Fast
© Forié€ [rep): > We call this “AddRepNoise”

(1 Sample short random shares in parallel: [r] = (ro,...,r4_1) > Fast

@ [s] = [s] + [r] o> Fast

(3) Refresh [s] > Fast
O Computet=A-[s] > Fast
© Unmask [t] to obtain t > Fast
O Verification key is vk = (A, t) > No mask
@ Signing key is sk = [s]




What happens inside AddRepNoise?
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What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.



What happens inside AddRepNoise?

+ria
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Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.
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Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

“Thomas, this is not a t-probing secure gadget!”



Raccoon - masked key generation

Keygen(1") — (sk, vk) LeakyKeygen(1') — (sk, vk, aux)

@ Generate A= [I|A] © Generate A = [1]A] .

@ Sample [s] using AddRepNoise @ sg < {sum of (rep.d — t)ﬁshort rjo|ses}

© Compute t=A - [s] © Samplet shor_t noises (S1,...,5t)

@ Unmask [t] to obtain t O s=so+35

© Verification key is vk = (A, t) 6 t:=As B

O Signing key is sk = [s] © Return vk = (A, 1), sk = s, auxiliary
information aux = (54,...,5¢)

Proof intuition:

-» For any EUF-CMA t-probing adversary given access to Keygen (left alg.), we can
construct an EUF-CMA adversary given access to LeakyKeygen (right alg.)

> LeakyKeygen() can be simulated given an LWE sample (A, tg = Asp)



Dilithium - signature

Dilithium follows the Fiat-Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t), msg) — sig

@ Generate a short ephemeral secret r

@ Compute the commitmentw = A -r

® Compute the challenge ¢ = H(w, msg, vk)

@ Compute the responsez=s-c+r

© Check that zisin a given interval. If not, restart.
O Signature is sig = (c, z)

> Slow
> Fast
> No mask
> Fast
> Slow

Masking bottlenecks:
@) Short secret generation (@) requires B2A.
@ Rejection sampling (@) requires A2B.
Total masking overhead: O(d” log q)



Raccoon - masked signature

Sign(sk = [s],vk = (A, t), msg) — sig

@ Generate a masked short ephemeral secret [r] using “AddRepNoise” > Fast

@ Compute the commitment [w] = A - [r] > Fast
© Unmask [w] to obtain w > Fast
@ Compute the challenge ¢ = H(w, msg, vk) > No mask
© Compute the response [z] = [s] - ¢ + [r] > Fast
® Unmask [z] to obtain z > Fast

@ (No more rejection sampling!)

© Signature is sig = (¢, z)

Total masking overhead: O(dlogd)



Raccoon - masked signature

Sign(sk = [s],vk = (A, t), msg) — sig

@ Generate a masked short ephemeral secret [r] using “AddRepNoise” > Fast
@ Compute the commitment [w] = A - [r] > Fast
© Unmask [w] to obtain w > Fast
@ Compute the challenge ¢ = H(w, msg, vk) > No mask
© Compute the response [z] = [s] - ¢ + [r] > Fast
® Unmask [z] to obtain z > Fast
@ (No more rejection sampling!)

© Signature is sig = (¢, z)

Total masking overhead: O(dlogd)

But why would it even be secure?




Impact on the modulus

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: sl Iell/lsl | a/liell
>

HVZK (rej. samp.)
q




Impact on the modulus

Key recovery (LWE)

>

Forgery (SIS)

>

Dilithium: sl

[Ir(l/llsl]

a/llrll

—>

HVZK (rej. samp.)

q

Key recovery (LWE)

—>

Forgery (SIS)

—>

Raccoon: IIs|

[Irll/llsl]

a/llrll

HVZK (Rényi div.)

q

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)



Impact on the modulus ‘"SHIELD

Key recovery (LWE) Forgery (SIS)
> >
Dilithium: s Irll/lsll a/llr
—>
HVZK (rej. samp.)
I q 1
Key recovery (LWE) Forgery (SIS)
Raccoon: [Isl| Irll/ sl a/llr

HVZK (Rényi div.)
g

@ Removing rejection sampling increases ||r||/||s|| from ©(dims) to © ({|c||v/Queries)
@ The increased q in turn requires increasing ||s||, q/||r|| and/or the dimensions.



Performances on a Desktop

100
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© With some tricks [SR23], RAM consumption is < 128 kB

Speed (ms)

—e— Dilithium
—=— Raccoon

16

Number of shares d

32



Conclusion

Raccoon is a specific-purpose scheme aimed at high side-channel resistance:
© Same assumptions as Dilithium
© Simpler
© Verification key size is similar
©@ Signature is 4x larger
® When masked, orders of magnitude faster than other schemes are
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