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Motivation

Signature schemes strike a balance between:
Sizes (verification key and signatures)
Speed (signing, verification)
Portability
Conservative assumptions
Resistance against side‐channel attacks

And so on...
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Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]



Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]
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Figure 1: Flowchart of the signature
Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]



Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1) (1)

such that
x0 + x1 + · · ·+ xd−1 = x (2)

In t‐probing model, ideally 0 leakage if d > t
In “real life”, security is exponential in d
What about computations?



Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...
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From river-crossing to masking

Now replace:
1 The set { farmer, wolf, goat, cabbage } by the shares (x0, . . . , xd−1)
2 The operation “everyone crosses the river” by an arbitrary function f(JxK)→ JyK
3 The constraints “never leave A alone with B” by “a probing adversary shall not learn
anything”

... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Simple and fast: Θ(d) operations
Refresh (JaK→ JaK′)?

Protect against attacks and allows composition frameworks (SNI, PINI, IOS, etc.)
Simple and fast: Θ(d log d) operations

Multiplication (JcK = Ja · bK)?
Complex and slower: Θ(d2) operations

More complex operations?
Use so‐called mask conversions, very slow: Θ(d2) operations per bit to convert
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Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)



Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

1 How do we sample a uniform d‐sharing JrK
of r← Uniform(S) securely?

S = Znq is easy, S ⊊ Zq is hard
Naive solutions do not work
Best known method:

1 Find a boolean circuit f that samples
(r1, . . . , rlog q)← Uniform(S)

2 Evaluate f in masked boolean form:
(Jr1Kb, . . . , Jrlog qKb)← JfKb (3)

3 Use mask conversion on each bit:JriKb → JriKa (4)

4 Recombine the masked bits:JrKa := ∑
i

2i JriKa (5)

Complexity: O
(
d2 (|f|+ log q)

)



Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

2 Compute A r:
Linear operation thus easy
Complexity: Õ(d)

3 Bit dropping w⊤ := ⌊w⌉k:
The lower bits of w are sensitive:

w− (Az− tc) = ec

Requires mask conversion (B2A + A2B)
Complexity: O(d2 log q)

4 Challenge computation is unmasked:
Previously: ad‐hoc assumption [BBE+18]
Now: everyone cites [DFPS23]



Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

5 Compute z = s c+ r:
Linear thus fast

6 Rejection sampling:
Requires mask conversion (A2B), slow

7 Compute h:
Linear thus fast



Masked Dilithium [CGTZ23]

Dilithium‐Sign

1 Sample r← S
2 w := A r ▷ Õ(d)
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k ▷ Õ(d)
8 Output sig = (c, z,h)

2 4 8 16
0

0.01

Number of shares d

Speed (billions of cycles)

NTT
A r
z
h
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3 w⊤ := ⌊w⌉k ▷ O(d2 log q)
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
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Masked Dilithium [CGTZ23]

Dilithium‐Sign

1 Sample r← S ▷ O(d2 log q)
2 w := A r ▷ Õ(d)
3 w⊤ := ⌊w⌉k ▷ O(d2 log q)
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
6 If z not in S′, goto 1 ▷ O(d2 log q)
7 h := w⊤ − ⌊Az− t c⌉k ▷ Õ(d)
8 Output sig = (c, z,h)
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Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/


Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/


Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/


Raccoon



Main design principle: be like water

We build a masking‐friendly scheme from
scratch:

We can completely deviate from
existing schemes and frameworks
Only hard constraints are security
and masking‐friendliness



Raccoon - masked key generation

Keygen(1λ)→ (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 JsK = (0, . . . ,0) ▷ Fast
3 For i ∈ [rep]: ▷We call this “AddRepNoise”

1 Sample short random shares in parallel: JrK = (r0, . . . , rd−1) ▷ Fast
2 JsK := JsK + JrK ▷ Fast
3 Refresh JsK ▷ Fast

4 Compute t = A · JsK ▷ Fast
5 Unmask JtK to obtain t ▷ Fast
6 Verification key is vk = (A, t) ▷ No mask
7 Signing key is sk = JsK



What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

“Thomas, this is not a t‐probing secure gadget!”
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Raccoon - masked key generation

Keygen(1λ)→ (sk, vk)

1 Generate A =
[
I | Ā

]
2 Sample JsK using AddRepNoise
3 Compute t = A · JsK
4 Unmask JtK to obtain t
5 Verification key is vk = (A, t)
6 Signing key is sk = JsK

LeakyKeygen(1λ)→ (sk, vk, aux)

1 Generate A =
[
I | Ā

]
2 s0 ← {sum of (rep d− t) short noises}
3 Sample t short noises (s̄1, . . . , s̄t)
4 s := s0 +

∑
i s̄i

5 t := As
6 Return vk = (A, t), sk = s, auxiliary
information aux = (s̄1, . . . , s̄t)

Proof intuition:
For any EUF‐CMA t‐probing adversary given access to Keygen (left alg.), we can
construct an EUF‐CMA adversary given access to LeakyKeygen (right alg.)
LeakyKeygen() can be simulated given an LWE sample (A, t0 = As0)



Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg)→ sig

1 Generate a short ephemeral secret r ▷ Slow
2 Compute the commitment w = A · r ▷ Fast
3 Compute the challenge c = H(w,msg, vk) ▷ No mask
4 Compute the response z = s · c+ r ▷ Fast
5 Check that z is in a given interval. If not, restart. ▷ Slow
6 Signature is sig = (c, z)

Masking bottlenecks:
Short secret generation ( 1 ) requires B2A.
Rejection sampling ( 5 ) requires A2B.

Total masking overhead: Θ(d2 log q)



Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg)→ sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Fast
2 Compute the commitment JwK = A · JrK ▷ Fast
3 Unmask JwK to obtain w ▷ Fast
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Fast
6 Unmask JzK to obtain z ▷ Fast
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)

But why would it even be secure?
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Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥r∥/∥s∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥
√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.
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Performances on a Desktop

1 2 4 8 16 32
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Number of shares d

Speed (ms)

Dilithium
Raccoon

With some tricks [SR23], RAM consumption is < 128 kB



Conclusion

Raccoon is a specific‐purpose scheme aimed at high side‐channel resistance:
Same assumptions as Dilithium
Simpler
Verification key size is similar
Signature is 4x larger
When masked, orders of magnitude faster than other schemes are



Questions?
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