
Masking-Friendly Signatures
and the Design of Raccoon

Rafael del Pino
PQShield

Thomas Espitau
PQShield

Shuichi Katsumata
PQShield
AIST

Mary Maller
PQShield

Ethereum Foundation

Fabrice Mouhartem
CryptPad

Thomas Prest
PQShield

Mélissa Rossi
ANSSI

Markku‐Juhani Saarinen
PQShield

Tampere University

Motivation

Signature schemes strike a balance between:
Sizes (verification key and signatures)
Speed (signing, verification)
Portability
Conservative assumptions
Resistance against side‐channel attacks

And so on...

Dilithium

Falcon

SPHINCS+

Raccoon

Dilithium

Falcon

SPHINCS+

Raccoon

Side-Channel
Attacks

Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]

Example with Falcon

In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

SamplerZ

Figure 1: Flowchart of the signature
Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]

Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (x0, x1, . . . , xd−1) (1)

such that
x0 + x1 + · · ·+ xd−1 = x (2)

In t‐probing model, ideally 0 leakage if d > t
In “real life”, security is exponential in d
What about computations?

Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...

Interlude: river-crossing puzzles

Remember this puzzle?

“ A farmer with a wolf, a goat, and a cabbage must cross a river by boat.
The boat can carry only the farmer and a single item. If left unattended
together, the wolf would eat the goat, or the goat would eat the cabbage.
How can they cross the river without anything being eaten? ”

It gets quickly complicated...

From river-crossing to masking

Now replace:
1 The set { farmer, wolf, goat, cabbage } by the shares (x0, . . . , xd−1)
2 The operation “everyone crosses the river” by an arbitrary function f(JxK)→ JyK
3 The constraints “never leave A alone with B” by “a probing adversary shall not learn
anything”

... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Simple and fast: Θ(d) operations
Refresh (JaK→ JaK′)?

Protect against attacks and allows composition frameworks (SNI, PINI, IOS, etc.)
Simple and fast: Θ(d log d) operations

Multiplication (JcK = Ja · bK)?
Complex and slower: Θ(d2) operations

More complex operations?
Use so‐called mask conversions, very slow: Θ(d2) operations per bit to convert

From river-crossing to masking

Now replace:
1 The set { farmer, wolf, goat, cabbage } by the shares (x0, . . . , xd−1)
2 The operation “everyone crosses the river” by an arbitrary function f(JxK)→ JyK
3 The constraints “never leave A alone with B” by “a probing adversary shall not learn
anything”

... and you obtain an inexhaustible source of headaches for cryptographers.

How difficult are operations to mask?
Addition (JcK = Ja+ bK)?

Simple and fast: Θ(d) operations
Refresh (JaK→ JaK′)?

Protect against attacks and allows composition frameworks (SNI, PINI, IOS, etc.)
Simple and fast: Θ(d log d) operations

Multiplication (JcK = Ja · bK)?
Complex and slower: Θ(d2) operations

More complex operations?
Use so‐called mask conversions, very slow: Θ(d2) operations per bit to convert

Masking
Dilithium

Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

1 How do we sample a uniform d‐sharing JrK
of r← Uniform(S) securely?

S = Znq is easy, S ⊊ Zq is hard
Naive solutions do not work
Best known method:

1 Find a boolean circuit f that samples
(r1, . . . , rlog q)← Uniform(S)

2 Evaluate f in masked boolean form:
(Jr1Kb, . . . , Jrlog qKb)← JfKb (3)

3 Use mask conversion on each bit:JriKb → JriKa (4)

4 Recombine the masked bits:JrKa := ∑
i

2i JriKa (5)

Complexity: O
(
d2 (|f|+ log q)

)

Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

2 Compute A r:
Linear operation thus easy
Complexity: Õ(d)

3 Bit dropping w⊤ := ⌊w⌉k:
The lower bits of w are sensitive:

w− (Az− tc) = ec

Requires mask conversion (B2A + A2B)
Complexity: O(d2 log q)

4 Challenge computation is unmasked:
Previously: ad‐hoc assumption [BBE+18]
Now: everyone cites [DFPS23]

Masking Dilithium step-by-step

Dilithium‐Sign

1 Sample r← Uniform(S)
2 w := A r
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg)
5 z := s c+ r
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k
8 Output sig = (c, z,h)

5 Compute z = s c+ r:
Linear thus fast

6 Rejection sampling:
Requires mask conversion (A2B), slow

7 Compute h:
Linear thus fast

Masked Dilithium [CGTZ23]

Dilithium‐Sign

1 Sample r← S
2 w := A r ▷ Õ(d)
3 w⊤ := ⌊w⌉k
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
6 If z not in S′, goto 1

7 h := w⊤ − ⌊Az− t c⌉k ▷ Õ(d)
8 Output sig = (c, z,h)

2 4 8 16
0

0.01

Number of shares d

Speed (billions of cycles)

NTT
A r
z
h

Masked Dilithium [CGTZ23]

Dilithium‐Sign

1 Sample r← S
2 w := A r ▷ Õ(d)
3 w⊤ := ⌊w⌉k ▷ O(d2 log q)
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
6 If z not in S′, goto 1 ▷ O(d2 log q)
7 h := w⊤ − ⌊Az− t c⌉k ▷ Õ(d)
8 Output sig = (c, z,h)

2 4 8 16
0

1

2

Number of shares d

Speed (billions of cycles)

NTT
A r
z
h
⌊w⌉k
Reject

Masked Dilithium [CGTZ23]

Dilithium‐Sign

1 Sample r← S ▷ O(d2 log q)
2 w := A r ▷ Õ(d)
3 w⊤ := ⌊w⌉k ▷ O(d2 log q)
4 c := H(w⊤,msg) ▷ No mask
5 z := s c+ r ▷ Õ(d)
6 If z not in S′, goto 1 ▷ O(d2 log q)
7 h := w⊤ − ⌊Az− t c⌉k ▷ Õ(d)
8 Output sig = (c, z,h)

2 4 8 16
0

5

10

15

Number of shares d

Speed (billions of cycles)

NTT
A r
z
h
⌊w⌉k
Reject
Sample
Total

Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/

Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/

Takeaway

Masking Dilithium efficiently remains difficult despite several years of works:
Masking the GLP lattice‐based signature scheme at any order [BBE+18]
Masking Dilithium ‐ efficient implementation and side‐channel evaluation [MGTF19]
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations [ABC+23]
Improved Gadgets for the High‐Order Masking of Dilithium [CGTZ23]

None of these works manage to break the Θ(d2 log q) barrier.

What about Mitaka?
Last year: Mitaka: a simpler, parallelizable, maskable variant of Falcon [EFG+22]
Now: A Key‐Recovery Attack against Mitaka in the t‐Probing Model [Pre23]

Slides and video on https://tprest.github.io/
Mitaka cannot be masked efficiently with existing techniques.

Back to the drawing board!

https://tprest.github.io/

Raccoon

Main design principle: be like water

We build a masking‐friendly scheme from
scratch:

We can completely deviate from
existing schemes and frameworks
Only hard constraints are security
and masking‐friendliness

Raccoon - masked key generation

Keygen(1λ)→ (sk, vk)

1 Generate a large matrix A =
[
I | Ā

]
∈ Rk×(k+ℓ)

q ▷ No mask
2 JsK = (0, . . . ,0) ▷ Fast
3 For i ∈ [rep]: ▷We call this “AddRepNoise”

1 Sample short random shares in parallel: JrK = (r0, . . . , rd−1) ▷ Fast
2 JsK := JsK + JrK ▷ Fast
3 Refresh JsK ▷ Fast

4 Compute t = A · JsK ▷ Fast
5 Unmask JtK to obtain t ▷ Fast
6 Verification key is vk = (A, t) ▷ No mask
7 Signing key is sk = JsK

What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

“Thomas, this is not a t‐probing secure gadget!”

What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

“Thomas, this is not a t‐probing secure gadget!”

What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

“Thomas, this is not a t‐probing secure gadget!”

What happens inside AddRepNoise?

Problem: a probing adversary can learn the sum of T random in 2 probes.

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

“Thomas, this is not a t‐probing secure gadget!”

Raccoon - masked key generation

Keygen(1λ)→ (sk, vk)

1 Generate A =
[
I | Ā

]
2 Sample JsK using AddRepNoise
3 Compute t = A · JsK
4 Unmask JtK to obtain t
5 Verification key is vk = (A, t)
6 Signing key is sk = JsK

LeakyKeygen(1λ)→ (sk, vk, aux)

1 Generate A =
[
I | Ā

]
2 s0 ← {sum of (rep d− t) short noises}
3 Sample t short noises (s̄1, . . . , s̄t)
4 s := s0 +

∑
i s̄i

5 t := As
6 Return vk = (A, t), sk = s, auxiliary
information aux = (s̄1, . . . , s̄t)

Proof intuition:
For any EUF‐CMA t‐probing adversary given access to Keygen (left alg.), we can
construct an EUF‐CMA adversary given access to LeakyKeygen (right alg.)
LeakyKeygen() can be simulated given an LWE sample (A, t0 = As0)

Dilithium - signature

Dilithium follows the Fiat‐Shamir with aborts paradigm.

Sign(sk = s, vk = (A, t),msg)→ sig

1 Generate a short ephemeral secret r ▷ Slow
2 Compute the commitment w = A · r ▷ Fast
3 Compute the challenge c = H(w,msg, vk) ▷ No mask
4 Compute the response z = s · c+ r ▷ Fast
5 Check that z is in a given interval. If not, restart. ▷ Slow
6 Signature is sig = (c, z)

Masking bottlenecks:
Short secret generation (1) requires B2A.
Rejection sampling (5) requires A2B.

Total masking overhead: Θ(d2 log q)

Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg)→ sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Fast
2 Compute the commitment JwK = A · JrK ▷ Fast
3 Unmask JwK to obtain w ▷ Fast
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Fast
6 Unmask JzK to obtain z ▷ Fast
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)

But why would it even be secure?

Raccoon - masked signature

Sign(sk = JsK, vk = (A, t),msg)→ sig

1 Generate a masked short ephemeral secret JrK using “AddRepNoise” ▷ Fast
2 Compute the commitment JwK = A · JrK ▷ Fast
3 Unmask JwK to obtain w ▷ Fast
4 Compute the challenge c = H(w,msg, vk) ▷ No mask
5 Compute the response JzK = JsK · c+ JrK ▷ Fast
6 Unmask JzK to obtain z ▷ Fast
7 (No more rejection sampling!)
8 Signature is sig = (c, z)

Total masking overhead: O(d log d)

But why would it even be secure?

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥r∥/∥s∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥
√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥
√
Queries

)

2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Impact on the modulus

Dilithium: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (rej. samp.)

q

Raccoon: ∥s∥ ∥r∥/∥s∥ q/∥r∥

Key recovery (LWE) Forgery (SIS)

HVZK (Rényi div.)

q

1 Removing rejection sampling increases ∥r∥/∥s∥ from Θ(dim s) to Θ
(
∥c∥
√
Queries

)
2 The increased q in turn requires increasing ∥s∥, q/∥r∥ and/or the dimensions.

Performances on a Desktop

1 2 4 8 16 32
0

20

40

60

80

100

Number of shares d

Speed (ms)

Dilithium
Raccoon

With some tricks [SR23], RAM consumption is < 128 kB

Conclusion

Raccoon is a specific‐purpose scheme aimed at high side‐channel resistance:
Same assumptions as Dilithium
Simpler
Verification key size is similar
Signature is 4x larger
When masked, orders of magnitude faster than other schemes are

Questions?

Dmitri Asonov and Rakesh Agrawal.
Keyboard acoustic emanations.
In 2004 IEEE Symposium on Security and Privacy, pages 3–11. IEEE Computer
Society Press, May 2004.

Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia
Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François‐Xavier
Standaert, and Christine van Vredendaal.
Protecting dilithium against leakage: Revisited sensitivity analysis and improved
implementations.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(4):58–79, Aug. 2023.

Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre‐Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi.
Masking the GLP lattice‐based signature scheme at any order.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 354–384. Springer, Heidelberg, April / May 2018.

Jean‐Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high‐order masking of dilithium.

IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(4):110–145, Aug. 2023.

Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé.
A detailed analysis of fiat‐shamir with aborts.
In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 327–357, Cham, 2023. Springer Nature Switzerland.

Wim Van Eck.
Electromagnetic radiation from video display units: An eavesdropping risk?
Computers & Security, 4:269–286, 1985.

Thomas Espitau, Pierre‐Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Mitaka: A simpler, parallelizable, maskable variant of falcon.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III,
volume 13277 of LNCS, pages 222–253. Springer, Heidelberg, May / June 2022.

Emre Karabulut and Aydin Aysu.
FALCON down: Breaking FALCON post‐quantum signature scheme through
side‐channel attacks.

In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5‐9, 2021, pages 691–696. IEEE, 2021.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun.
Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999.

Paul C. Kocher.
Timing attacks on implementations of Diffie‐Hellman, RSA, DSS, and other
systems.
In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer, Heidelberg, August 1996.

Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre‐Alain Fouque.
Masking Dilithium ‐ efficient implementation and side‐channel evaluation.
In Robert H. Deng, Valérie Gauthier‐Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.
Thomas Prest.
A key‐recovery attack against mitaka in the t‐probing model.

In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I,
volume 13940 of LNCS, pages 205–220. Springer, Heidelberg, May 2023.

Markku‐Juhani O. Saarinen and Mélissa Rossi.
Mask compression: High‐order masking on memory‐constrained devices.
Cryptology ePrint Archive, Paper 2023/1117, 2023.
https://eprint.iacr.org/2023/1117.
Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
Cryptology ePrint Archive, Paper 2023/224, 2023.
https://eprint.iacr.org/2023/224.

https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/224

	Introduction
	Side-Channel Attacks
	Masking Dilithium
	Raccoon

