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Lattice assumptions

Short integer solution (SIS)

Find short s? Known

-» Used in dense/surjective regime
- Gets easier when ||s|| increases

-» Also hard to solve approximately
[CGM19]
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Learning with errors (LWE)
/ Knovvn
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Find short (e, s)?

\.

-» Used in sparse/injective regime
- Gets harder when ||(s, )| increases
-» Also hard to solve approximately
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Short integer solution (SIS) Learning with errors (LWE)

Known
-
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Find short s? Known

Find short (e, s)?




Hash & Sign

Signatures

Fiat-Shamir

Warning:

‘ Falcon

|

-» Some mathematics are oversimplified

Part I: Hash & Sign
-» High-level principle
-» Choice of lattice class
=» Choice of sampler

Part Il: Fiat-Shamir
-» High-level principle
-» Choice of lattice class
-» Ninja tricks
-» Choice of distribution

-» Does not cover recent schemes based on the lattice isomorphism problem (LIP)




Hash—lhen—Sign



Signatures based on Hash-then-Sign

SSRSY%X

Message H Hash digest ’ﬁ
msg h — H(msg) | Signature sig

fuk : X =Y

3

=» The signer computes h = H(msg), then sig = g..(h) using the signing key sk.
=» The verifier computes h = H(msg), then h’ = f, (sig) using the verification key
vk, and checks that the results match (i.e. h’ = h).




The case of RSA signatures

v H X — x4 mod N
essage

Hash digest ,—]
msg h = H(msg) [ Signature sig

y — v¢ mod N

Example with RSA signatures:
= ga(x) = x4 mod N, and fu(y) = y¢ mod N.
= e-d=1mod p(N)




The case of lattices (first attempt)

h——sst. A-s=hmodgqg

Message H Hash digest , ,
msg h — H(msg) | Signature sig |

s— A-smodg

First attempt with lattice (not secure):
= \Verification key: vk is a (pseudo)random matrix A € Rp*™.

<> Signing key: sk is a short matrix B € Ry'™*™ such that A-B =0mod q.

> Signing: => Verification:
@ Hash msg to a point h € R}, @ CheckthatA-s=h.
@ Computece Ry st. A-c=h. @ Check that s is short
® Computev e B- R} close tov (say, ||s||2 is small).

(the hard part, see next slide)
@ The signatureiss:=c—v




The case of lattices (first attempt)

h——sst. A-s=hmodgqg

Message H Hash digest , ,
msg h — H(msg) | Signature sig |

s— A-smodg

First attempt with lattice (not secure):
= \Verification key: vk is a (pseudo)random matrix A € Rp*™.

-» Signing key: sk is a short matrix B € Rg™" such that A-B=0mod q.

> Signing: = Verification:
@ Hash msg to a point h € R}, @ CheckthatA-s=h.
@ Computece Ry st. A-c=h. @ Check that s is short
€ Compute v € B- R close to v (say, ||s||2 is small).

(the hard part, see next slide)
@ The signatureiss:=c—v

Big questions:
> How do we generate a suitable keypair (A, B) ?

-» How do we|compute v close to v ?




Computing a lattice point v close to the target c

For NearestPlane, the Gram-Schmidt orthogonalization B =L - B is precomputed.

RoundOff(B, c) NearestPlane(B, L, c)

@ tec-B! @ tec-B!
® Forje{n,...,1} ® Forje{n,...,1}:

<1> Zj < ’thJ <1> Zj < [fj +Zi>j(t1 —Z,')Lw'J
® Returnv:=z-B ® Returnv:=z-B




Trapdoor sampling |

Problem: the distribution of signatures may leak the shape of B
Solution: randomize the solving procedure with Gaussians




NTRU trapdoors

Letf,g,F,G € R such that:

fG—gF=q (1)
h:=g/f mod q (2)

—f —F|

WesetA=[1 h]andB= [g G]

\.




Computing a suitable (A, B) = NTRU trapdoors ’“SHl[[n

NTRU trapdoors

Letf,g,F,G € R such that:

fG—gF=q (1)
h:=g/f mod q (2)

_ _ |8 G
WesetA=[1 h] andB_[_f —F]'

\.

€3 Pseudorandomness of A: NTRU assumption.
e Orthogonality: One can easily show that A- B =0 mod qg.

% Shortness of B: Given (f,g), one can compute suitable (F, G) such that

F,G)|| =~ 3
IF, G Hng \/ (9 (3)

component J_ (f,g)  component || (f, 3)




Computing a suitable (A, B) — [ ] trapdoors

Gadget matrices

We define g, B such that g- B =0 mod g:
b do
1 :

D

> g=(1,b,b%...,bk ) and B = .where g =3, qib/
b ar
=1 g1

<> The “gadget matrix’ G = 1, ® g and G+ = |, ® B also satisfy G - G+ = 0 mod q.

Generating a Micciancio-Peikert trapdoor

< SetA = [A I], where Ais a uniformly random matrix.
-» Generate a short random matrix R

2> SetA=[A G-A-RlandB= {R

I] .GL,

Pseudorandomness (under LWE), orthonogality and shortness: Exercise.




Example with NTRU trapdoors

Remember SIS (solving A - s = t) gets harder when ||s]| is shorter.

—— Rand. nearest plane

Security

—— Rand. hybrid

nd. round-off

Average norm of solution




Example with NTRU trapdoors

Remember SIS (solving A - s = t) gets harder when ||s]| is shorter.

Security

nd. round-off

Average norm of solution

-» 2017: Improved statistical analyses w/ R'enyi divergence (solid arrows)




Example with NTRU trapdoors

Remember SIS (solving A - s = t) gets harder when ||s]| is shorter.

Security

nd. round-off

Average norm of solution

-» 2017: Improved statistical analyses w/ R'enyi divergence (solid arrows)
2> 2022: Improved generation of NTRU trapdoors (dashed arrow)




Section conclusion and bibliography

Foundations Trapdoor lattices
= NTRU lattices [HHPT03, DLP14]

=» Micciancio-Peikert trapdoors
-» Micciancio-Peikert sampling [MP12] [MP12, CGM19]

=» Improved NTRU trapdoors [¢a22]

=» Trapdoor sampling [GPV08]

Efficient instantiations

= Falcon (NTRU) [PFHT17]
=» Randomised nearest plane [GPVO8] - Mitaka (NTRU) [FFG+27]

Trapdoor samplers

- Randomised round-off [Pei10] = (Micciancio-Peikert) [CCM19]
= Hybrid [Prel5] Proof techniques
> Fast Fourier sampling [DP16] =» Security model [GPVO8, CGM19]

=» Statistical relaxations [Pre17/]







Fiat-Shamir Signatures

(3-Move) Identification Protocol

r

Know
(sk, vk) - Commitment
Challenge € C
\ Response

Know
vk

=3
| 4

|

v/X

~

F-S

Signature Scheme

J

F-S refers to the Fiat-Shamir transform:

\ 4

KnOV\/ Know
(Ska Vk) vk
Q sig q
—_—
\ 4
sig = Signg, (msg) l

Verify,, (sig, msg) — v//X

J

= The challenge is now defined as H(Commitment|msg).
=» The signature is (Commitment,Response).




Fiat-Shamir Signatures ‘"SHIELD

(3-Move) Identification Protocol Signature Scheme
KnOW KHOW KnOV\/ Knov\/

(Sk, Vk) Commitment vk (Sk, Vk) vk
Challenge € C q Q sig q

4 F-S e |
\ Response > \ 4
l sig = Signg, (msg) l
v/X Verify,, (sig, msg) — v//X
. J N\ J

We obtain an existentially unforgeable signature scheme in the ROM if the ID protocol is:
@ Correct: An honest prover can convince a verifier he knows sk
@ Honest verifier zero-knowledge: A valid transcript can be simulated without sk
© Soundness: A dishonest prover cannot convince a verifier he knows sk




Schnorr signatures (Fiat-Shamir w/ discrete log)

Keygen(g € G)

O x < ZF
A h« g
® sk:=x,vk:=h

(@ =IGJ)

Sign(msg, sk)

O r 7y

D u«—g

© ¢+ H(u||msg)
O z+r—cx

O sig = (u,2)

(Commitment)
(Challenge)
(Response)

Verify(msg, vk)

@ Accept if and only if (g7 - h® = u)

It is easy to show:
v Correctness
v HVZK

v/ Special soundness

Note that DSA and ECDSA are very
similar to this scheme.




Fiat-Shamir with SIS -@S"IH“

Keygen(A € Rg”) Verify(msg, vk, sig)

O s x, (short) @ Acceptiff (zis short) and (Az — ct = u).
Dt As

@ sk:=s,vk:=t

Sign(msg, sk)

Oryx (short)
@ u+ Ar

® c + H(u||msg)
O z+r—cs

O sig:= (u,2)




Fiat-Shamir with SIS

Keygen(A € RSXC)

o S<— X1
Dt As
@ sk:=s,vk:=t

(short)

Verify(msg, vk, sig)

@ Acceptiff (zis short) and (Az — ct = u).

Sign(msg, sk)

O reyx

D u<+ Ar

® c + H(u||msg)
Oz«r—cs

O sig:= (u,2)

(short)

v/ Correctness
X HVZK
X Special soundness




Fiat-Shamir with SIS

Keygen(A € RSXC)

o S<— X1
Dt As
@ sk:=s,vk:=t

(short)

Sign(msg, sk)

O reyx

D u<+ Ar

® c + H(u||msg)
Oz«r—cs

O sig:= (u,2)

(short)

(short)

Verify(msg, vk, sig)

@ Acceptiff (zis short) and (Az — ct = u).

Soundness: Using rewinding:

= Transcript 1: (u,c,z | Az — ct = u)
= Transcript 2: (u,c/,z' | Az — c't = u)

Al 227 <o

v/ Correctness

X HVZK

v Special soundness (imperfect) is
satisfied, as long as c is short.

(4)



Fiat-Shamir with SIS

Keygen(A € RSXC)

o S<— X1
Dt As
@ sk:=s,vk:=t

(short)

Sign(msg, sk)

Oryx

D u<+ Ar

® c + H(u||msg)
Oz+r—cs

© Rejection sampling step
0 sig := (u,2)

(short)

(short)

Verify(msg, vk, sig)

@ Acceptiff (zis short) and (Az — ct = u).

v/ Correctness
v/ HVZK requires rejection sampling.
v Special soundness (imperfect) is
satisfied, as long as ¢ is short.
Without rejection sampling, statistical
attacks may recover the signing key.




Fiat-Shamir with SIS

Keygen(A € RSXC)

o S<— X1
Dt As
@ sk:=s,vk:=t

(short)

Sign(msg, sk)

Oryx

D u<+ Ar

® c + H(u||msg)
Oz+r—cs

© Rejection sampling step
0 sig := (u,2)

(short)

(short)

Verify(msg, vk, sig)

@ Acceptiff (zis short) and (Az — ct = u).

Concrete hardness:

=» Key-recovery: SIS with a short s
-» Forgery: SIS with a short-ish z

Hardness

Shortness of solution




Fiat-Shamir w/ (LWE+SIS) |

Keygen(A € RZX[) Verify(msg, vk, sig)

O si,s) <X X Xo (short) @ Accept iff (z1,25) is short and
Ot As +s, Az, +z, —tc=u
© sk:=(s1,s;),vk:=t

Concrete hardness:

Sign(msg, sk) > Key-recovery: LWE with a short s
> Forgery: SIS with a short-ish z

O ri,rp X3 XXy (short)
A u—Ar+r N — SIS
KR (FS+SIS) YS
© c < H(u|jmsg) (short)| &
LIKR (FS+LWE) F (FS+LWE)
@ z1¢r1—cs S
O z,+r—-cs) T F (FS+SIS)
® Rejection sampling step

@ sig:= (u,21,2)

Shortness of solution




Fiat-Shamir w/ (LWE+SIS) |

Keygen(A € RZX[) Verify(msg, vk, sig)

@ si,s0 ¢ X XX (short) @ Accept iff (z1,25) is short and
Ot As,+s) Az, +2z, —tc=u
© sk:=(s1,s;),vk:=t

LWE also allows two optimisations that can

be summarised by:
“If you are solving LWE for (At + e),
O ri,r X3 X X4 (short) you are also solving LWE for (A, t).”
A u—Ar+r, We will note MSB := “most significant bits”
© ¢ + H(u||msg) (short)| (the proportion may vary).

Oz, r —csq

Oz, <r)—csy

® Rejection sampling step
@ sig:= (u,z1,27)




Fiat-Shamir w/ (LWE+SIS) - Optimisation 1

Keygen(A € RZX[)

Verify(msg, vk, sig)

O si,5 X1 XX
(2] t+ As; +s)
© sk:=(s1,s;),vk:=t

(short)

Sign(msg, sk)

O rx;

@ u <« MSB(Ar)

© c + H(u||msg)

@ z+r—csy

© Rejection sampling step
0 sig:=(u, z2)

(short)

(short)

@ Acceptiff 'z is short and
MSB(Az- tc) =u

Bai-Galbraith trick [BG14]: the response
sends only z := z; instead of (z1,2)).
=» To preserve correctness, only check that
(Az — tc) and u match on their MSBs.
-» If moderate, bit dropping only mildly
affect the hardness of LWE.




Fiat-Shamir w/ (LWE+SIS) - Optimisation 2

Keygen(A € RZX[)

Verify(msg, vk, sig)

O 51,5 X1 X X2
@ t< MSB(Asy +s))
9 sk := (51,52),Vk =1t

(short)

Sign(msg, sk)

Or—yx,;

@ u + MSB(Ar)

© c + H(u||msg)
Oz+r—cs

© Rejection sampling step
0O sig := (u,2)

(short)

(short)

@ Accept iff zis short and
MSB(Az —tc) =u

Dilithium trick [LDK™17] (naive version):
the signer drops the least significant bits of t
during Keygen.
-» vk gets shorter.
-» Intuitively, this adds an error term e to t
2> Az—ct=u-—c(s; +e)
With mild bit dropping, the signature is valid
with good probability (if it isn't, restart).

Dilithium uses a more sophisticated version
of this trick.




A closer look at rejection sampling (here with SIS)

Sign(msg, sk)

© Rejection sampling step
0 sig = (u,2)

@ Sample r uniformly in {—R,R}"
@ u<+ Ar

© c + H(u||msg)

O z«r—cs

(short)

How do we choose the distribution of r and
perform rejection sampling? Suppose:

<> rissampled uniformly in {—R,...,R}"
<> c¢s; is guaranteed to be in {-S,...,S}"




A closer look at rejection sampling (here with SIS)

Sign(msg, sk)

© Rejection sampling step
0 sig = (u,2)

@ Sample r uniformly in {—R,R}"
@ u<+ Ar

© c + H(u||msg)

O z«r—cs

(short)

Does a transcript (u, ¢, z) leak information?
X z¢ {—R,...,R}" = zleaks the “direction” of cs;

How do we choose the distribution of r and
perform rejection sampling? Suppose:

<> rissampled uniformly in {—R,...,R}"
<> c¢s; is guaranteed to be in {-S,...,S}"

v ze{-(R-Y95),...,(R=5)}" = zleaks nothing. Indeed, for any z* in this set:

Pr—cs; =z ]=Plr=z"4+cs,| =
——

_1
2R+ 1)




A closer look at rejection sampling (here with SIS)

Sign(msg, sk)

© Rejection sampling step
0 sig = (u,2)

@ Sample r uniformly in {—R,R}"
@ u<+ Ar

© c + H(u||msg)

O z«r—cs

(short)

Does a transcript (u, ¢, z) leak information?
X z¢ {—R,...,R}" = zleaks the “direction” of cs;

Xze{-R,...,RI"\{=(R=Y95),...,(R=5)}" = more subtle but also leaks
v ze{-(R-Y95),...,(R=5)}" = zleaks nothing. Indeed, for any z* in this set:

Pr—cs; =z ]=Plr=z"4+cs,| =
——

How do we choose the distribution of r and
perform rejection sampling? Suppose:

<> rissampled uniformly in {—R,...,R}"
<> c¢s; is guaranteed to be in {-S,...,S}"

_1
2R+ 1)




A closer look at rejection sampling (here with SIS)

How do we choose the distribution of r and
perform rejection sampling? Suppose:

<> rissampled uniformly in {—R,...,R}"
<> c¢s; is guaranteed to be in {-S,...,S}"

@ Sample r uniformly in {—R,R}"
@ u+ Ar

® ¢+ H(u|msg) (short)
O z+r—cs

© If||z]|eo > R—S, goto €8

0O sig := (u,2)

Does a transcript (u, ¢, z) leak information?
X z¢ {—R,...,R}" = zleaks the “direction” of cs;
Xze{-R,...,RI"\{=(R=9),...,(R=95)}" = more subtle but also leaks

v ze{-(R-Y95),...,(R=S5)}" = zleaks nothing. Indeed, for any z* in this set:

* * _ 1

Acceptifze {—(R—Y95),...,(R—S)}". This happens w/ prob. ~ (1 - %)n <exp (—%).

D




Section conclusion and bibliography

Foundations (FSwA)
=» Using SIS [Lyu09]
=» Using SIS + LWE [Lyu12]

Ninja tricks
= Cutting [sig | [BG14]
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Distributions
=» In-depth survey [DFPS22]
= Bimodal Gaussians [DDLL13]

Efficient instantiations
=» Dilithium [LDK ™ 17]
> qTESLA [BAAT17/]
=» BLISS [DDLL13]
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