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Introduction



Lattice assumptions

Short integer solution (SIS)

A

s t=

KnownFind short s?

Learning with errors (LWE)

A
s

e
+

= t

Known

Find short (e, s)?

Used in dense/surjective regime
Gets easier when ‖s‖ increases
Also hard to solve approximately
[CGM19]

Used in sparse/injective regime
Gets harder when ‖(s, e)‖ increases
Also hard to solve approximately



Lattice assumptions

Short integer solution (SIS)
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NTRU

Given h ∈ Rq = Zq[x]/(φ), find small f, g such that g · f−1 = h (i.e.
[
f g

]
·
[
h
−1

]
= 0)



Roadmap

Signatures

Fiat‐Shamir

Hash & Sign

Dilithium

Falcon

Part I: Hash & Sign
High‐level principle
Choice of lattice class
Choice of sampler

Part II: Fiat‐Shamir
High‐level principle
Choice of lattice class
Ninja tricks
Choice of distribution

Warning:
Some mathematics are oversimplified
Does not cover recent schemes based on the lattice isomorphism problem (LIP)



Hash-then-Sign



Signatures based on Hash-then-Sign

Message
msg

Hash digest
h = H(msg) Signature sigH

gsk : Y→ X

fvk : X→ Y

The signer computes h = H(msg), then sig = gsk(h) using the signing key sk.
The verifier computes h = H(msg), then h′ = fvk(sig) using the verification key
vk, and checks that the results match (i.e. h′ = h).



The case of RSA signatures

Message
msg

Hash digest
h = H(msg) Signature sigH x 7−→ xd mod N

y 7−→ ye mod N

Example with RSA signatures:
gsk(x) = xd mod N, and fvk(y) = ye mod N.
e · d = 1 mod ϕ(N)



The case of lattices (first attempt)

Message
msg

Hash digest
h = H(msg) Signature sigH

h 7−→ s s.t. A · s = h mod q

s 7−→ A · s mod q

First attempt with lattice (not secure):
Verification key: vk is a (pseudo)random matrix A ∈ Rn×m

q .
Signing key: sk is a short matrix B ∈ Rm×m

q such that A · B = 0 mod q .
Signing:

1 Hash msg to a point h ∈ Rn
q.

2 Compute c ∈ Rm
q s.t. A · c = h.

3 Compute v ∈ B · Rm
q close to v

(the hard part, see next slide)
4 The signature is s := c− v

Verification:
1 Check that A · s = h.
2 Check that s is short
(say, ‖s‖2 is small).

Big questions:
How do we generate a suitable keypair (A,B) ?
How do we compute v close to v ?
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Computing a lattice point v close to the target c

For NearestPlane, the Gram‐Schmidt orthogonalization B = L · B̃ is precomputed.

RoundOff(B, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj
⌋

3 Return v := z · B

⇓

NearestPlane(B, L, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj +

∑
i>j(t1 − zi)Li,j

⌋
3 Return v := z · B

⇓



Trapdoor sampling [GPV08]

Problem: the distribution of signatures may leak the shape of B
Solution: randomize the solving procedure with Gaussians

+ =
c



Computing a suitable (A,B) – NTRU trapdoors
NTRU trapdoors

Let f, g, F,G ∈ R such that:

fG− gF = q (1)
h := g/f mod q (2)

We set A =
[
1 h

]
and B =

[
g G
−f −F

]
.

Pseudorandomness of A: NTRU assumption.

Orthogonality: One can easily show that A · B = 0 mod q.

Shortness of B: Given (f, g), one can compute suitable (F,G) such that

‖(F,G)‖ ≈ q
‖(f, g)‖︸ ︷︷ ︸

component ⊥ (f,g)

+

√
d
12
· ‖(f, g)‖︸ ︷︷ ︸

component ∥ (f,g)

(3)
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Computing a suitable (A,B) – [MP12] trapdoors
Gadget matrices

We define g,B such that g · B = 0 mod q:

g = (1, b, b2, . . . , bk−1) and B =


b q0
−1 . . . ...

. . . b qk−2
−1 qk−1

, where q =
∑

i qibi

The “gadget matrix” G = In ⊗ g and G⊥ = In ⊗ B also satisfy G ·G⊥ = 0 mod q.

Generating a Micciancio‐Peikert trapdoor

Set Ā =
[
Â I

]
, where Â is a uniformly random matrix.

Generate a short random matrix R

Set A =
[
Ā G− Ā · R

]
and B =

[
R
I

]
· G⊥.

Pseudorandomness (under LWE), orthonogality and shortness: Exercise.



Example with NTRU trapdoors

Remember SIS (solving A · s = t) gets harder when ‖s‖ is shorter.

Rand. nearest plane

Rand. hybrid

Rand. round‐off

Average norm of solution

Se
cu
rit
y

2017: Improved statistical analyses w/ R’enyi divergence (solid arrows)
2022: Improved generation of NTRU trapdoors (dashed arrow)
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Section conclusion and bibliography
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Trapdoor samplers
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Trapdoor lattices
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Efficient instantiations
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Mitaka (NTRU) [EFG+22]
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Proof techniques
Security model [GPV08, CGM19]
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Fiat-Shamir
Signatures



Fiat-Shamir Signatures

Know
(sk, vk)

Know
vkCommitment

Challenge ∈ C

Response

/

(3‐Move) Identification Protocol

Know
(sk, vk)

Know
vk

sig

sig = Signsk(msg)

Verifyvk(sig,msg)→ /

Signature Scheme

F‐S

F‐S refers to the Fiat‐Shamir transform:
The challenge is now defined as H(Commitment‖msg).
The signature is (Commitment,Response).



Fiat-Shamir Signatures

Know
(sk, vk)

Know
vkCommitment

Challenge ∈ C

Response

/

(3‐Move) Identification Protocol

Know
(sk, vk)

Know
vk

sig

sig = Signsk(msg)

Verifyvk(sig,msg)→ /

Signature Scheme

F‐S

We obtain an existentially unforgeable signature scheme in the ROM if the ID protocol is:
1 Correct: An honest prover can convince a verifier he knows sk
2 Honest verifier zero‐knowledge: A valid transcript can be simulated without sk
3 Soundness: A dishonest prover cannot convince a verifier he knows sk



Schnorr signatures (Fiat-Shamir w/ discrete log)

Keygen(g ∈ G)

1 x← Z×
q (q = |G|)

2 h← gx

3 sk := x, vk := h

Sign(msg, sk)

1 r← Z×
q

2 u← gr (Commitment)
3 c← H(u‖msg) (Challenge)
4 z← r− cx (Response)
5 sig := (u, z)

Verify(msg, vk)

1 Accept if and only if (gz · hc = u)

It is easy to show:

Correctness

HVZK

Special soundness

Note that DSA and ECDSA are very
similar to this scheme.



Fiat-Shamir with SIS
Keygen(A ∈ Rk×ℓ

q )

1 s← χ1 (short)
2 t← As
3 sk := s, vk := t

Sign(msg, sk)

1 r← χ2 (short)
2 u← Ar
3 c← H(u‖msg)
4 z← r− cs
5 sig := (u, z)

Verify(msg, vk, sig)

1 Accept iff (z is short) and (Az− ct = u).
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Fiat-Shamir with SIS
Keygen(A ∈ Rk×ℓ

q )

1 s← χ1 (short)
2 t← As
3 sk := s, vk := t

Sign(msg, sk)

1 r← χ2 (short)
2 u← Ar
3 c← H(u‖msg) (short)
4 z← r− cs
5 sig := (u, z)

Verify(msg, vk, sig)

1 Accept iff (z is short) and (Az− ct = u).

Soundness: Using rewinding:
Transcript 1: (u, c, z | Az− ct = u)
Transcript 2: (u, c′, z′ | Az′ − c′t = u)

[ A ‖ t ] ·
[
z− z′
c− c′

]
= 0 (4)

Correctness
HVZK
Special soundness (imperfect) is
satisfied, as long as c is short.



Fiat-Shamir with SIS
Keygen(A ∈ Rk×ℓ

q )

1 s← χ1 (short)
2 t← As
3 sk := s, vk := t

Sign(msg, sk)

1 r← χ2 (short)
2 u← Ar
3 c← H(u‖msg) (short)
4 z← r− cs
5 Rejection sampling step
6 sig := (u, z)

Verify(msg, vk, sig)

1 Accept iff (z is short) and (Az− ct = u).

Correctness
HVZK requires rejection sampling.
Special soundness (imperfect) is
satisfied, as long as c is short.

Without rejection sampling, statistical
attacks may recover the signing key.



Fiat-Shamir with SIS
Keygen(A ∈ Rk×ℓ

q )

1 s← χ1 (short)
2 t← As
3 sk := s, vk := t

Sign(msg, sk)

1 r← χ2 (short)
2 u← Ar
3 c← H(u‖msg) (short)
4 z← r− cs
5 Rejection sampling step
6 sig := (u, z)

Verify(msg, vk, sig)

1 Accept iff (z is short) and (Az− ct = u).

Concrete hardness:
Key‐recovery: SIS with a short s
Forgery: SIS with a short‐ish z

KR

F

Shortness of solution
H
ar
dn
es
s

SIS



Fiat-Shamir w/ (LWE+SIS) [Lyu12]
Keygen(A ∈ Rk×ℓ

q )

1 s1, s2 ← χ1 × χ2 (short)
2 t← As1 + s2
3 sk := (s1, s2), vk := t

Sign(msg, sk)

1 r1, r2 ← χ3 × χ4 (short)
2 u← Ar1 + r2
3 c← H(u‖msg) (short)
4 z1 ← r1 − cs1
5 z2 ← r2 − cs2
6 Rejection sampling step
7 sig := (u, z1, z2)

Verify(msg, vk, sig)

1 Accept iff (z1, z2) is short and
Az1 + z2 − tc = u

Concrete hardness:
Key‐recovery: LWE with a short s
Forgery: SIS with a short‐ish z

KR (FS+SIS)

F (FS+SIS)

KR (FS+LWE) F (FS+LWE)

Shortness of solution

H
ar
dn
es
s

SIS
LWE



Fiat-Shamir w/ (LWE+SIS) [Lyu12]
Keygen(A ∈ Rk×ℓ

q )

1 s1, s2 ← χ1 × χ2 (short)
2 t← As1 + s2
3 sk := (s1, s2), vk := t

Sign(msg, sk)

1 r1, r2 ← χ3 × χ4 (short)
2 u← Ar1 + r2
3 c← H(u‖msg) (short)
4 z1 ← r1 − cs1
5 z2 ← r2 − cs2
6 Rejection sampling step
7 sig := (u, z1, z2)

Verify(msg, vk, sig)

1 Accept iff (z1, z2) is short and
Az1 + z2 − tc = u

LWE also allows two optimisations that can
be summarised by:

“If you are solving LWE for (A, t+ e),
you are also solving LWE for (A, t).”

We will note MSB := “most significant bits”
(the proportion may vary).



Fiat-Shamir w/ (LWE+SIS) - Optimisation 1
Keygen(A ∈ Rk×ℓ

q )

1 s1, s2 ← χ1 × χ2 (short)
2 t← As1 + s2
3 sk := (s1, s2), vk := t

Sign(msg, sk)

1 r← χ3 (short)

2 u← MSB(Ar)
3 c← H(u‖msg) (short)
4 z← r− cs1
5 Rejection sampling step
6 sig := (u, z )

Verify(msg, vk, sig)

1 Accept iff z is short and
MSB(Az‐ tc) = u

Bai‐Galbraith trick [BG14]: the response
sends only z := z1 instead of (z1, z2).

To preserve correctness, only check that
(Az− tc) and u match on their MSBs.
If moderate, bit dropping only mildly
affect the hardness of LWE.



Fiat-Shamir w/ (LWE+SIS) - Optimisation 2
Keygen(A ∈ Rk×ℓ

q )

1 s1, s2 ← χ1 × χ2 (short)
2 t← MSB(As1 + s2)
3 sk := (s1, s2), vk := t

Sign(msg, sk)

1 r← χ3 (short)
2 u← MSB(Ar)
3 c← H(u‖msg) (short)
4 z← r− cs1
5 Rejection sampling step
6 sig := (u, z)

Verify(msg, vk, sig)

1 Accept iff z is short and
MSB(Az− tc) = u

Dilithium trick [LDK+17] (naive version):
the signer drops the least significant bits of t
during Keygen.

vk gets shorter.
Intuitively, this adds an error term e to t
Az− ct = u− c(s2 + e)

With mild bit dropping, the signature is valid
with good probability (if it isn’t, restart).

Dilithium uses a more sophisticated version
of this trick.



A closer look at rejection sampling (here with SIS)
Sign(msg, sk)

1 Sample r uniformly in {−R,R}n

2 u← Ar
3 c← H(u‖msg) (short)
4 z← r− cs
5 Rejection sampling step
6 sig := (u, z)

How do we choose the distribution of r and
perform rejection sampling? Suppose:

r is sampled uniformly in {−R, . . . , R}n

cs1 is guaranteed to be in {−S, . . . , S}n

Does a transcript (u, c, z) leak information?
z /∈ {−R, . . . , R}n ⇒ z leaks the “direction” of cs1

z ∈ {−R, . . . , R}n\{−(R− S), . . . , (R− S)}n ⇒ more subtle but also leaks

z ∈ {−(R− S), . . . , (R− S)}n ⇒ z leaks nothing. Indeed, for any z∗ in this set:
P[r− cs1 = z∗] = P[r = z∗ + cs1︸ ︷︷ ︸

∈{−R,...,R}n

] =
1

(2R+ 1)n

Accept if z ∈ {−(R− S), . . . , (R− S)}n . This happens w/ prob. ≈
(
1− S

R

)n
≤ exp

(
− S

nR

)
.
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A closer look at rejection sampling (here with SIS)
Sign(msg, sk)
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