How Multi-Recipient KEMs can help the Deployment of Post-Quantum Cryptography

Joël Alwen Matthew		Dominik	Shuichi	Eike Kiltz	
AWS Campagna		Hartmann	Katsumata	Ruhr University	
AWS		AWS	PQShield & AIST	Bochum	
Jake Massimo AWS	Marta Mularczyk AWS	Guillermo Pascual-Perez ISTA	Thomas Prest PQShield	Peter Schwabe MPI & Radboud University	

Fifth PQC Standardization Conference

Encapsulating K to 1 party using Kyber:
Encapsulating K to 100 parties using Kyber:
Encapsulating K to 100 parties using a "multi-recipient Kyber":
5 504 bytes
How do we gain this factor 14?

Multi-Recipient KEMs

Main question

How efficiently can we share a session key K between (N + 1) users?

- Naive solution with El Gamal:
 - > Send $(g^{r_i}, pk_i^{r_i} \cdot K)$ for each user *i*
- → Variant by Kurosawa, PKC 2002:
 - > Send $(g^r, pk_1^r \cdot K, \dots, pk_N^r \cdot K)$
 - > Asymptotically, saves a factor 2

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed in key-dependent and key-independent parts:

· PQ SHIFI

D)

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed in key-dependent and key-independent parts: $Enc^{ind}(r_0) = Enc^{dep}(pk_i, msg, r_0, r_i)$

PQCL

ctxt;

El Gamal is decomposable. Let a ciphertext $ctxt = (g^r, pk_1^r \cdot msg)$ with $pk_1 = g^{sk_1}$.

ctxt₀

1
$$\operatorname{ctxt}_0 = g^r$$
.
2 $\operatorname{ctxt}_1 = \operatorname{pk}_1^r \cdot \operatorname{msg}$.

Enc(pk_i, msg)

A ciphertext with N recipients will be $\overrightarrow{ctxt} = (ctxt_0, \widehat{ctxt}_1, \dots, \widehat{ctxt}_N)$. Key generation and decryption remain the same.

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed in key-dependent and key-independent parts: $Enc^{ind}(r_0) = Enc^{dep}(pk_i, msg, r_0, r_i)$

· PQ SHIFI D

ctxt;

El Gamal is decomposable. Let a ciphertext $ctxt = (g^r, pk_1^r \cdot msg)$ with $pk_1 = g^{sk_1}$.

ctxt₀

1
$$\operatorname{ctxt}_0 = g^r$$
.
2 $\operatorname{ctxt}_1 = \operatorname{pk}_1^r \cdot \operatorname{msg}$.

Enc(pk_i, msg)

A ciphertext with N recipients will be $\overrightarrow{txt} = (\overrightarrow{ctxt}_0, \overrightarrow{ctxt}_1, \dots, \overrightarrow{ctxt}_N)$. Key generation and decryption remain the same.

Questions:

1 What about CCA security?

✓ (∃ decomposable IND-CPA mPKE) $\stackrel{\text{F-O}}{\Longrightarrow}$ (∃ decomposable IND-CCA mKEM).

2 Is Kyber securely decomposable?

mKyber: a Kyber-based mKEM

Kyber, CPA version

Keygen ()

- Sample A and short s, e
- 2 $\mathbf{b} \leftarrow \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$

Enc(ek,msg)

Sample short row vectors r, e', e"
 u ← r ⋅ A + e'
 v ← r ⋅ b + e" + Encode(msg)
 ctxt := (u, v)

. . .

PQSH

Dec(dk,ctxt)

$$\mathbf{0} \, \mathsf{msg} \leftarrow \mathsf{Decode}(\mathbf{v} - \mathbf{u} \cdot \mathbf{S})$$

This construction is decomposable:

- \rightarrow Use the same **A** for all public keys.
- \rightarrow u is then independent of ek and msg.

This construction is decomposable:

- \rightarrow Use the same **A** for all public keys.
- \rightarrow **u** is then independent of ek and msg.

Enc(ek = b,msg)

- Sample short matrices r, e', e''
- 2 $\mathbf{u} \leftarrow \mathbf{rA} + \mathbf{e}'$
- $\bullet \mathbf{v} \leftarrow \mathbf{r}\mathbf{b} + \mathbf{e}'' + \mathsf{Encode}(\mathsf{msg})$
- **4** $ctxt := (\mathbf{u}, \mathbf{v})$

$MultiEnc({ek_1, ..., ek_N}, msg)$

Sample short matrices r, e'

2 u
$$\leftarrow$$
 rA + e'

1) Sample a short matrix \mathbf{e}_i''

2
$$\mathbf{v}_i \leftarrow \mathbf{rb}_i + \mathbf{e}_i'' + \text{Encode}(\text{msg})$$

$$\mathbf{0} \vec{\mathsf{txt}} := (\mathbf{u}, \mathbf{v}_1, \dots, \mathbf{v}_N)$$

This construction is decomposable:

- \rightarrow Use the same **A** for all public keys.
- \rightarrow **u** is then independent of ek and msg.

Are we done? No!

- O Security?
- 2 Efficiency?

$MultiEnc({ek_1, ..., ek_N}, msg)$

Sample short matrices r, e'

2 u
$$\leftarrow$$
 rA + e'

1 Sample a short matrix \mathbf{e}_i''

$$2$$
 $\mathbf{v}_i \leftarrow \mathbf{rb}_i + \mathbf{e}_i'' + \text{Encode}(\text{msg})$

$$\mathbf{0} \vec{\mathsf{txt}} := (\mathbf{u}, \mathbf{v}_1, \dots, \mathbf{v}_N)$$

What assumptions do we rely on?

	Kyber	mKyber
Public key security	MLWE, O(1) samples	MLWE, $O(1)$ samples
Ciphertext security	MLWE, O(1) samples	MLWE, $O(N)$ samples

Which attacks are relevant against MLWE?

	Primal	Dual	Arora-Ge	BKW
	(Lattice)	(Lattice)	(Algebraic)	(Combinatorial)
O(1) samples	~	~	-	-
O(N) samples	~	~	~	~

What assumptions do we rely on?

	Kyber	mKyber
Public key security	$MLWE,~\mathbf{O}(1)~samples$	MLWE, $O(1)$ samples
Ciphertext security	MLWE, O(1) samples	MLWE, $O(N)$ samples

Which attacks are relevant against MLWE?

	Primal	Dual	Arora-Ge	BKW
	(Lattice)	(Lattice)	(Algebraic)	(Combinatorial)
O(1) samples	~	~	-	-
O(N) samples	~	~	~	~

Are we in trouble? No.

 \checkmark Bit dropping on the v_i makes Arora-Ge + BKW hard to the point of irrelevance

	Parameters								Sizes in bytes		
	9	n	k	η_1	η_2	du	dv	msg	ek	u	$ \mathbf{v} $
Kyber-512	3329	256	2	3	2	10	4	32	800	640	128
mKyber-512	3329	256	2	3	2	11	3	16	768	704	48

•	•	•	
•	٠	PQCL	
٠	٠	· •	
		\sim (

	Parameters							Sizes in bytes			
	9	n	k	η_1	η_2	du	dv	msg	ek	u	$ \mathbf{v} $
Kyber-512	3329	256	2	3	2	10	4	32	800	640	128
mKyber-512	3329	256	2	3	2	11	3	16	768	704	48

Not covered in this talk (see paper):

- We can achieve IND-CCA security
- 🔒 We can upgrade to adaptive security by doubling the ciphertext size (amKyber)
- 差 Parameter selection differs from the KEM setting

Application 1: Broadcast

Setting

One sender sends the same keying material K to N parties

- \rightarrow Example application: state synchronisation in HSM fleet
- Perfect fit for mKEM!
- \rightarrow Also slightly simpler than naive solution (no DEM)

One sender sends the same keying material K to N parties

→ Example application: state synchronisation in HSM fleet

128

- Perfect fit for mKEM!
- \rightarrow Also slightly simpler than naive solution (no DEM)

Example:

Setting

Po SHIELD

One sender sends the same keying material K to N parties

- \rightarrow Example application: state synchronisation in HSM fleet
- Perfect fit for mKEM!
- \rightarrow Also slightly simpler than naive solution (no DEM)

Example:

One sender sends the same keying material K to N parties

- → Example application: state synchronisation in HSM fleet
- Perfect fit for mKEM!
- Also slightly simpler than naive solution (no DEM)

Example:

Application 2: MLS

PO 🗨 🗖

The N users are arranged as the leaves of a (binary) tree

Tree invariant: (user knows the private key of a node) \Leftrightarrow (node is in the path of user)

The N users are arranged as the leaves of a (binary) tree

Tree invariant: (user knows the private key of a node) \Leftrightarrow (node is in the path of user) Users routinely update their key material and broadcast:

- > All [log N] encryption keys (P) in their direct path
- > All $\geq \lceil \log N \rceil$ ciphertexts (\leq) in their co-path
- > 2 signatures (🔛) one for encryption keys, one for ciphertexts

When users are removed, their keys are removed for security.

 \rightarrow This changes the topology of the tree

When users are removed, their keys are removed for security.

- \rightarrow This changes the topology of the tree
- \rightarrow This increases the number of ciphertext sent (here, 4 \rightarrow 6)

When users are removed, their keys are removed for security.

- \rightarrow This changes the topology of the tree
- \rightarrow This increases the number of ciphertext sent (here, 4 \rightarrow 6)
- → Key observation: Some of these ciphertexts encrypt the same value
 - We can use mKEMs!
 - ig> Allows to always have pprox the best-case behavior

Next step: mKEM-optimised designs

PQ SHIFI

Suppose we replace the binary tree by a star/flat tree:

Next step: mKEM-optimised designs

PQCH

Suppose we replace the binary tree by a star/flat tree:

→ The number of ciphertexts become O(N), but we can compress this using mKEM!

Next step: mKEM-optimised designs

PQC

Suppose we replace the binary tree by a star/flat tree:

- → The number of ciphertexts become O(N), but we can compress this using mKEM!
- \rightarrow In addition, we can exploit the decomposability and have each user only download a portion O(1) of the ciphertext

Suppose we replace the binary tree by a star/flat tree:

- The number of ciphertexts become O(N), but we can compress this using mKEM!
- → In addition, we can exploit the decomposability and have each user only download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post-Quantum Secure Messaging, RWC 2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

Conclusion

MKEMs are a simple and powerful tool for scalable deployment of PQC

- 🕍 Many potential applications
- 😚 We believe standardizing mKEMs would be useful

Questions?