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I want to share a key with 100 people

Encapsulating K to 1 party using Kyber: 768 bytes
Encapsulating K to 100 parties using Kyber: 76 800 bytes
Encapsulating K to 100 parties using a “multi‐recipient Kyber”: 5 504 bytes

How do we gain this factor 14?



Multi‐Recipient
KEMs



Main question

How efficiently can we share a session key K between (N + 1) users?

Naive solution with El Gamal:
Send

(
gri ,pkrii · K

)
for each user i

Variant by Kurosawa, PKC 2002:
Send

(
gr,pkr1 · K, . . . ,pkrN · K

)
Asymptotically, saves a factor 2



Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed
in key‐dependent and key‐independent parts:

Enc(pki,msg) ctxt0 ĉtxti=
Encind(r0) Encdep(pki,msg, r0, ri)

El Gamal is decomposable. Let a ciphertext ctxt = (gr,pkr1 · msg) with pk1 = gsk1 .
1 ctxt0 = gr.
2 ĉtxt1 = pkr1 · msg.

A ciphertext with N recipients will be
→

ctxt = (ctxt0, ĉtxt1, . . . , ĉtxtN).
Key generation and decryption remain the same.

Questions:
1 What about CCA security?

(∃ decomposable IND‐CPA mPKE) F‐O=⇒ (∃ decomposable IND‐CCA mKEM).
2 Is Kyber securely decomposable?
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mKyber: a
Kyber‐based
mKEM



Kyber, CPA version
Keygen ()

1 Sample A and short s, e
2 b← A · s+ e
3 dk := (s,E),ek := b

Enc(ek,msg)

1 Sample short row vectors r, e′, e′′

2 u← r · A+ e′

3 v← r · b+ e′′ + Encode(msg)
4 ctxt := (u, v)

Dec(dk,ctxt)

1 msg← Decode(v− u · S)



This construction is decomposable:
Use the same A for all public keys.
u is then independent of ek and msg.

Enc(ek = b,msg)

1 Sample short matrices r, e′, e′′

2 u← rA+ e′

3 v← rb+ e′′ + Encode(msg)
4 ctxt := (u, v)

=⇒

MultiEnc({ek1, . . . ,ekN},msg)

1 Sample short matrices r, e′

2 u← rA+ e′
3 For i = 1, . . . ,N:
1 Sample a short matrix e′′i
2 vi ← rbi + e′′i + Encode(msg)

4
→

ctxt := (u, v1, . . . , vN)

Are we done? No!
1 Security?
2 Efficiency?
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Cryptanalysis

What assumptions do we rely on?

Kyber mKyber

Public key security MLWE, O(1) samples MLWE, O(1) samples

Ciphertext security MLWE, O(1) samples MLWE, O(N) samples

Which attacks are relevant against MLWE?

Primal Dual Arora‐Ge BKW

(Lattice) (Lattice) (Algebraic) (Combinatorial)

O(1) samples ‐ ‐

O(N) samples

Are we in trouble? No.
Bit dropping on the vi makes Arora‐Ge + BKW hard to the point of irrelevance
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Wrapping up mKyber

Parameters Sizes in bytes

q n k η1 η2 du dv |msg| |ek| |u| |v|

Kyber‐512 3329 256 2 3 2 10 4 32 800 640 128

mKyber‐512 3329 256 2 3 2 11 3 16 768 704 48

Not covered in this talk (see paper):
We can achieve IND‐CCA security
We can upgrade to adaptive security by doubling the ciphertext size (amKyber)
Parameter selection differs from the KEM setting
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Application 1:
Broadcast



Setting

One sender sends the same keying material K to N parties
Example application: state synchronisation in HSM fleet
Perfect fit for mKEM!
Also slightly simpler than naive solution (no DEM)

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 mKyber ciphertext for N parties:
704 48 48 48 ... 48
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Application 2:
MLS



The TreeKEM construction (MLS)

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)

Users routinely update their key material and broadcast:
All ⌈logN⌉ encryption keys ( ) in their direct path
All ≥ ⌈logN⌉ ciphertexts ( ) in their co‐path
2 signatures ( ) – one for encryption keys, one for ciphertexts
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Blanking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

When users are removed, their keys are removed for security.
This changes the topology of the tree

This increases the number of ciphertext sent (here, 4→ 6)
Key observation: Some of these ciphertexts encrypt the same value

We can use mKEMs!
Allows to always have ≈ the best‐case behavior
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Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:

The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg


Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!

In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg


Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg


Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg


Conclusion



Conclusion

mKEMs are a simple and powerful tool for scalable deployment of PQC
Many potential applications
We believe standardizing mKEMs would be useful



Questions?
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