
How Multi-Recipient KEMs can
help the Deployment of

Post-Quantum Cryptography
Joël Alwen
AWS

Matthew
Campagna
AWS

Dominik
Hartmann
AWS

Shuichi
Katsumata

PQShield & AIST

Eike Kiltz
Ruhr University
Bochum

Jake Massimo
AWS

Marta Mularczyk
AWS

Guillermo
Pascual‐Perez

ISTA
Thomas Prest
PQShield

Peter Schwabe
MPI & Radboud
University

Fifth PQC Standardization Conference

I want to share a key with 100 people

Encapsulating K to 1 party using Kyber: 768 bytes
Encapsulating K to 100 parties using Kyber: 76 800 bytes
Encapsulating K to 100 parties using a “multi‐recipient Kyber”: 5 504 bytes

How do we gain this factor 14?

Multi‐Recipient
KEMs

Main question

How efficiently can we share a session key K between (N + 1) users?

Naive solution with El Gamal:
Send

(
gri ,pkrii · K

)
for each user i

Variant by Kurosawa, PKC 2002:
Send

(
gr,pkr1 · K, . . . ,pkrN · K

)
Asymptotically, saves a factor 2

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed
in key‐dependent and key‐independent parts:

Enc(pki,msg) ctxt0 ĉtxti=
Encind(r0) Encdep(pki,msg, r0, ri)

El Gamal is decomposable. Let a ciphertext ctxt = (gr,pkr1 · msg) with pk1 = gsk1 .
1 ctxt0 = gr.
2 ĉtxt1 = pkr1 · msg.

A ciphertext with N recipients will be
→

ctxt = (ctxt0, ĉtxt1, . . . , ĉtxtN).
Key generation and decryption remain the same.

Questions:
1 What about CCA security?

(∃ decomposable IND‐CPA mPKE) F‐O=⇒ (∃ decomposable IND‐CCA mKEM).
2 Is Kyber securely decomposable?

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed
in key‐dependent and key‐independent parts:

Enc(pki,msg) ctxt0 ĉtxti=
Encind(r0) Encdep(pki,msg, r0, ri)

El Gamal is decomposable. Let a ciphertext ctxt = (gr,pkr1 · msg) with pk1 = gsk1 .
1 ctxt0 = gr.
2 ĉtxt1 = pkr1 · msg.

A ciphertext with N recipients will be
→

ctxt = (ctxt0, ĉtxt1, . . . , ĉtxtN).
Key generation and decryption remain the same.

Questions:
1 What about CCA security?

(∃ decomposable IND‐CPA mPKE) F‐O=⇒ (∃ decomposable IND‐CCA mKEM).
2 Is Kyber securely decomposable?

Decomposability

Definition. In a decomposable encryption scheme, a ciphertext can be decomposed
in key‐dependent and key‐independent parts:

Enc(pki,msg) ctxt0 ĉtxti=
Encind(r0) Encdep(pki,msg, r0, ri)

El Gamal is decomposable. Let a ciphertext ctxt = (gr,pkr1 · msg) with pk1 = gsk1 .
1 ctxt0 = gr.
2 ĉtxt1 = pkr1 · msg.

A ciphertext with N recipients will be
→

ctxt = (ctxt0, ĉtxt1, . . . , ĉtxtN).
Key generation and decryption remain the same.

Questions:
1 What about CCA security?

(∃ decomposable IND‐CPA mPKE) F‐O=⇒ (∃ decomposable IND‐CCA mKEM).
2 Is Kyber securely decomposable?

mKyber: a
Kyber‐based
mKEM

Kyber, CPA version
Keygen ()

1 Sample A and short s, e
2 b← A · s+ e
3 dk := (s,E),ek := b

Enc(ek,msg)

1 Sample short row vectors r, e′, e′′

2 u← r · A+ e′

3 v← r · b+ e′′ + Encode(msg)
4 ctxt := (u, v)

Dec(dk,ctxt)

1 msg← Decode(v− u · S)

This construction is decomposable:
Use the same A for all public keys.
u is then independent of ek and msg.

Enc(ek = b,msg)

1 Sample short matrices r, e′, e′′

2 u← rA+ e′

3 v← rb+ e′′ + Encode(msg)
4 ctxt := (u, v)

=⇒

MultiEnc({ek1, . . . ,ekN},msg)

1 Sample short matrices r, e′

2 u← rA+ e′
3 For i = 1, . . . ,N:
1 Sample a short matrix e′′i
2 vi ← rbi + e′′i + Encode(msg)

4
→

ctxt := (u, v1, . . . , vN)

Are we done? No!
1 Security?
2 Efficiency?

This construction is decomposable:
Use the same A for all public keys.
u is then independent of ek and msg.

Enc(ek = b,msg)

1 Sample short matrices r, e′, e′′

2 u← rA+ e′

3 v← rb+ e′′ + Encode(msg)
4 ctxt := (u, v)

=⇒

MultiEnc({ek1, . . . ,ekN},msg)

1 Sample short matrices r, e′

2 u← rA+ e′
3 For i = 1, . . . ,N:
1 Sample a short matrix e′′i
2 vi ← rbi + e′′i + Encode(msg)

4
→

ctxt := (u, v1, . . . , vN)

Are we done? No!
1 Security?
2 Efficiency?

This construction is decomposable:
Use the same A for all public keys.
u is then independent of ek and msg.

Enc(ek = b,msg)

1 Sample short matrices r, e′, e′′

2 u← rA+ e′

3 v← rb+ e′′ + Encode(msg)
4 ctxt := (u, v)

=⇒

MultiEnc({ek1, . . . ,ekN},msg)

1 Sample short matrices r, e′

2 u← rA+ e′
3 For i = 1, . . . ,N:
1 Sample a short matrix e′′i
2 vi ← rbi + e′′i + Encode(msg)

4
→

ctxt := (u, v1, . . . , vN)

Are we done? No!
1 Security?
2 Efficiency?

Cryptanalysis

What assumptions do we rely on?

Kyber mKyber

Public key security MLWE, O(1) samples MLWE, O(1) samples

Ciphertext security MLWE, O(1) samples MLWE, O(N) samples

Which attacks are relevant against MLWE?

Primal Dual Arora‐Ge BKW

(Lattice) (Lattice) (Algebraic) (Combinatorial)

O(1) samples ‐ ‐

O(N) samples

Are we in trouble? No.
Bit dropping on the vi makes Arora‐Ge + BKW hard to the point of irrelevance

Cryptanalysis

What assumptions do we rely on?

Kyber mKyber

Public key security MLWE, O(1) samples MLWE, O(1) samples

Ciphertext security MLWE, O(1) samples MLWE, O(N) samples

Which attacks are relevant against MLWE?

Primal Dual Arora‐Ge BKW

(Lattice) (Lattice) (Algebraic) (Combinatorial)

O(1) samples ‐ ‐

O(N) samples

Are we in trouble? No.
Bit dropping on the vi makes Arora‐Ge + BKW hard to the point of irrelevance

Wrapping up mKyber

Parameters Sizes in bytes

q n k η1 η2 du dv |msg| |ek| |u| |v|

Kyber‐512 3329 256 2 3 2 10 4 32 800 640 128

mKyber‐512 3329 256 2 3 2 11 3 16 768 704 48

Not covered in this talk (see paper):
We can achieve IND‐CCA security
We can upgrade to adaptive security by doubling the ciphertext size (amKyber)
Parameter selection differs from the KEM setting

Wrapping up mKyber

Parameters Sizes in bytes

q n k η1 η2 du dv |msg| |ek| |u| |v|

Kyber‐512 3329 256 2 3 2 10 4 32 800 640 128

mKyber‐512 3329 256 2 3 2 11 3 16 768 704 48

Not covered in this talk (see paper):
We can achieve IND‐CCA security
We can upgrade to adaptive security by doubling the ciphertext size (amKyber)
Parameter selection differs from the KEM setting

Application 1:
Broadcast

Setting

One sender sends the same keying material K to N parties
Example application: state synchronisation in HSM fleet
Perfect fit for mKEM!
Also slightly simpler than naive solution (no DEM)

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 mKyber ciphertext for N parties:
704 48 48 48 ... 48

Setting

One sender sends the same keying material K to N parties
Example application: state synchronisation in HSM fleet
Perfect fit for mKEM!
Also slightly simpler than naive solution (no DEM)

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 mKyber ciphertext for N parties:
704 48 48 48 ... 48

Setting

One sender sends the same keying material K to N parties
Example application: state synchronisation in HSM fleet
Perfect fit for mKEM!
Also slightly simpler than naive solution (no DEM)

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 mKyber ciphertext for N parties:
704 48 48 48 ... 48

Setting

One sender sends the same keying material K to N parties
Example application: state synchronisation in HSM fleet
Perfect fit for mKEM!
Also slightly simpler than naive solution (no DEM)

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 mKyber ciphertext for N parties:
704 48 48 48 ... 48

Application 2:
MLS

The TreeKEM construction (MLS)

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)

Users routinely update their key material and broadcast:
All ⌈logN⌉ encryption keys () in their direct path
All ≥ ⌈logN⌉ ciphertexts () in their co‐path
2 signatures () – one for encryption keys, one for ciphertexts

The TreeKEM construction (MLS)

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)
Users routinely update their key material and broadcast:

All ⌈logN⌉ encryption keys () in their direct path
All ≥ ⌈logN⌉ ciphertexts () in their co‐path
2 signatures () – one for encryption keys, one for ciphertexts

Blanking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

When users are removed, their keys are removed for security.
This changes the topology of the tree

This increases the number of ciphertext sent (here, 4→ 6)
Key observation: Some of these ciphertexts encrypt the same value

We can use mKEMs!
Allows to always have ≈ the best‐case behavior

Blanking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

When users are removed, their keys are removed for security.
This changes the topology of the tree
This increases the number of ciphertext sent (here, 4→ 6)

Key observation: Some of these ciphertexts encrypt the same value
We can use mKEMs!
Allows to always have ≈ the best‐case behavior

Blanking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

When users are removed, their keys are removed for security.
This changes the topology of the tree
This increases the number of ciphertext sent (here, 4→ 6)
Key observation: Some of these ciphertexts encrypt the same value

We can use mKEMs!
Allows to always have ≈ the best‐case behavior

Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:

The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg

Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!

In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg

Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg

Next step: mKEM-optimised designs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Suppose we replace the binary tree by a star/flat tree:
The number of ciphertexts become O(N), but we can compress this using
mKEM!
In addition, we can exploit the decomposability and have each user only
download a portion O(1) of the ciphertext

For more details: More Efficient Protocols for Post‐Quantum Secure Messaging, RWC
2024. https://www.youtube.com/watch?v=0hCPbu1wrhg

https://www.youtube.com/watch?v=0hCPbu1wrhg

Conclusion

Conclusion

mKEMs are a simple and powerful tool for scalable deployment of PQC
Many potential applications
We believe standardizing mKEMs would be useful

Questions?

	Multi-Recipient KEMs
	mKyber: a Kyber-based mKEM
	Application 1: Broadcast
	Application 2: MLS
	Conclusion
	Questions?

