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Main question

How efficiently can we share a session key K between (N + 1) users?

=> Naive solution with El Gamal:
> Send (g7, pki - K) for each user i ®—> =
-» Variant by Kurosawa [Kur02]: , .

> Send (g, pk} - K, ..., pky - K) ) “‘ @
> Asymptotically, saves a factor 2 @ ®

-» Motivation: Secure group messaging @ ;. @



Main question

How efficiently can we share a session key K between (N + 1) users?

-» Terminology: ciphertext compression,
MKEM/mPKE, randomness reuse, etc. @
- Two flavors: . '

> Single-message (this work) y — "
> Multi-message (send a distinct K; to = .

each user)

=> [BBMOO, BPS00, Kur02, BBS03, Sma05, @ E @

HKO7, BFO7, HTASO9?, MH13, Yan15]

> No* post-quantum proposal @



This work

-» Revisiting mPKEs & mKEMs

> More natural definition
> Captures classical and post-quantum assumptions
> QROM security

-» Instantiation from post-quantum assumptions

> Lattices
> lIsogenies
> Efficiency increased by one or two orders of magnitude

-» Application to TreeKEM

> Interplay mKEM x TreeKEM

> Communication cost divided by 2
-» Focus on lattice-based mKEMs

> Concrete security analysis in the mKEM regime
> New lattice-based mKEMs
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Underlying properties in previous works:
=» Full reproducibility [BBSO3]
> Weak reproducibility [BFO5]

This work: decomposability. Enci™d(re)  Encd®P(pk,, M, ro, 1)
A A
7 Y _\
Enc(pk;, M) = cto ct:
— — —
A ciphertext with N recipients will be ct = (cto, Ccty,...,Cty).

Key generation and decryption remain the same.

Fully rep.  Weakly rep. Decomposable

El Gamal 51 51 51
LP [LP11] 55 55 51
SIDH [JD11, DJP14] 55 55 51

CSIDH 55 55 51



Fully rep.  Weakly rep. Decomposable

El Gamal v v v
LP[LP11] ? ? v
SIDH [JD11, DJP14] ? ? v
CSIDH ? ? v

Example: El Gamal. Let a ciphertext ct = (g, pk}; - M) with pk, = g%,
= Full reproducibility: (g, x) — (g, (8)%*2 - M').
- Decomposability: (cto =g, ct; = pk} - M).

— —~ —
A ciphertext with N recipients will be ct = (ctp, cty,..., Cty).
Key generation and decryption remain the same.



Generic Transforms

[BBSO3]  Fully rep. IND-CPA PKE © Multi-msg IND-CPA mPKE SM
[BBSO3]  Fully rep. IND-CCA PKE © Multi-msg IND-CCA mPKE SM
[BFO7] Weakly rep. IND-CPA PKE @ Single-msg IND-CCA mPKE ROM

Decomposable single-msg @y ;e meg IND-CCA MKEM  QROM

Ourwork |\ i5-CPA mPKE




Generic Transforms

[BBSO3]  Fully rep. IND-CPA PKE © Multi-msg IND-CPA mPKE SM
[BBSO3]  Fully rep. IND-CCA PKE © Multi-msg IND-CCA mPKE SM
[BFO7] Weakly rep. IND-CPA PKE @ Single-msg IND-CCA mPKE ROM

Decomposable single-msg @y ;e meg IND-CCA MKEM  QROM

Ourwork |\ i5-CPA mPKE

Open question: Can we (dis)prove the following statement?

(Decomposable multi-msg IND-CPA mPKE) €@ (Multi-msg IND-CCA mKEM)



Encaps({pk,...,pky})

@ Generate a random M
O cty <« Enci"(Gy(M))
® Fori=1,...,N:
> EE,» —
Enc?®P (pk;, M, G1 (M), Go(pk;, M)
O K:=H(Mm)

© Return (K, C_‘>t = (cto, (ai)ie[l\l]))

Decaps(pk;, ct = (cto, )

@ M« Dec(sk;, ct)
O IfM= 1, retunK:= L
O cty« Enct"(Gi(M))
O ct

Enc®(pk;, M, G1 (M), G, (pk;, M))
O If (cto,Ct;) # ct, return K := L
O Return K = H(M)

> G4, G, are PRFs, H is a hash function, all are modeled as random oracles.
= QROM proof uses compressed oracles [Zha19].

-» We can achieve implicit rejection as well.




Instantiation from
Post-Quantum
Assumptions




The Lindner-Peikert framework |

Keygen (A c Rmxm)

q

@ Sample short matrices S, E
® B+ AS+E
©® sk :=(S,E),pk:=B

W

@ Sample short matrices R, E/, E”
& U~—RA+F

©® V + RB + E” + Encode(M)

O ct:=(UV)

@ M < Decode(V — US)

Encompasses these NIST Round 3 candidates:

= FrodoKEM
> Kyber

= NTRU LPRime
> Saber



The Lindner-Peikert framework is decomposable:

-» Use the same A for all public keys.
=» U is then independent of pk and M.

Enc(pk = B, M)

@ Sample short matrices R, E/, E”
® U«—RA+FE

©® V + RB + E” + Encode(M)

O ct:=(UV)




The Lindner-Peikert framework is decomposable:

-» Use the same A for all public keys.
=» U is then independent of pk and M.

MultiEnc({pk, ..., pky}, M)

Enc(pk =B, M) @ Sample short matrices R, E’

@ Sample short matrices R, E/, E” ® U—RA+F

® U«~—RA+F —|® Fori=1,...,N:

® V~RB+E+ Encode(M) (1) Sample a short matrix E/

O ct:=(UV) (2) V; - RB; + E/ + Encode(M)
O ct:=(U,Vi,...,Vy)

Each V; is much smaller and faster to compute than U:

=» Shorter dimensions
-» Bit dropping

Security reduces to LWE with many samples (see end of the talk).



] and SIKE

=» Eis an elliptic curve
> E[63] = (Pa, Qn)
> E[63] = (Ps,Qs)

Keygen(E, Pa, Qn, P, Qs)
© sk =y, where y : E— E/(Rg) is

an isogeny of kernel Rg

© pk:= (E/(Rs), Y(Pa), ¥(Qn))

W

@ Sample anisogeny @ : E — E/(Rp)
© cto = (E/(Ra), ®(Ps), #(Qs))

© Compute j = j-Inv(E/(Ra, Rg))
Oct=jpM

O ct:=(ctg,Ct)
W
© Compute j = j-Inv(E/{Ra, Rg))
OM=jact




] and SIKE

-» Eis an elliptic curve
2> E[63] = (Pa, Q)
> E[(3] = (Ps,Qs)

Keygen(E, PAﬂ QA7 PB, QB)

@ sk;:= ¢, where ;- E — E/(Rg) is
an isogeny of kernel Rg)

O pk = (E/<Rg)>a¢f(PA)7LPi(QA))

Security reduces to SSDDH [DJP14].

Enc({pky,...,pky}. M)

@ Sample anisogeny @ : E — E/(Ry)
O cto=(E/(Ra),®(Ps), ®(Qs))
© Fori=1,....N:
(D Compute j; = j-Inv(E/(Ry, Rg)))
@ a,' =jidM
(4] (?t = (Cto,al,...,a/\;)

Dec(sk;, (cto, EE))

@ Compute j; = j-Inv(E/(Ra, RYY)
O M=j®ct




Impact on 1PKE + 4 KEMs (NIST level I)

00 Normal ciphertext
- 'lCompressed (amortized)

Size in bytes

30

16

16
[Kyber] [FrodoKEM]
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TreeKEM [BBR18, BBEM 20, OBR 20, ACDT20]:
> Key component of the MLS draft IETF proposal for group messaging
-» The N users are arranged as leaves of a (binary) tree
<> TreeKEM invariant: & knows a private 8 if and only if it is in its path.
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TreeKEM [BBR18, BBEM 20, OBR 20, ACDT20]:
-» Key component of the MLS draft IETF proposal for group messaging
-» The N users are arranged as leaves of a (binary) tree
<> TreeKEM invariant: & knows a private 8 if and only if it is in its path.

Post-compromise security: Users refresh their key material by broadcasting
an update package that contains:

-» One pk for each node in the g

-» One ct for each node in the ! (siblings of nodes in the path).



What if we use a m-ary tree instead of a binary tree?
> We send log,,,(N) public keys and (m — 1) - log,,,(N) ciphertexts
> However all ciphertexts at a same level encapsulate the same key!

> We can use a single mKEM ciphertext at each level
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What if we use a m-ary tree instead of a binary tree?
> We send log,,,(N) public keys and (m — 1) - log,,,(N) ciphertexts
-» However all ciphertexts at a same level encapsulate the same key!
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Size of an update package:
- Standard TreeKEM:  log,(N) - (|pk| + |cto| +|cti])
= m-ary trees + mKEM: log,,(N) - (|pk| + |cto| + [Cti| - m)




Size of an update package in kilobytes as

a function of number of users (NIST level 1)

Figure 1: TreeKEM with SIKE Figure 2: TreeKEM with FrodoKEM

12 300
—e— Binary —e— Binary
10 || - m-ary i 250 || -m m-ary

8 [ 200
6 - 150 ]
4 | 100 | -
2 : 50 | i

O £2 2‘5 2‘8 2‘11 2‘14 22 25 28 2‘11 2‘14

Note for later: for all examples, the package size is o« log N.
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We study the concrete security of the mKEMs based on:

- Kyber > FrodoKEM
-» Saber

We also propose two (more) efficient lattice-based mKEMs:
> BilboKEM (based on FrodoKEM)
=» llum (based on Kyber)

All schemes in this slide instantiate the Lindner-Peikert framework.
-» Security for key recovery: LWE/LWR with finite samples
-» Security for encryption: LWE/LWR with unbounded samples

A Work in progress



How is it related to LWE?

MultiEnc({pk, ..., pky}, M)

@ Sample short matrices R, E’, {EY, ..., E}}
® U~ RA+FE
® Fori=1,...,N:

(1 V; + RB; + E/ + Encode(M)

O ct:=(U,Vi,...,Vy)

Attacker’s goal: Given (U, V1, ..., Vy), recover M.
Note that:

(UIVall- - [IVi) = Rox (A[IBy]| ... [1By) + (E[[ET] - . [IEX) + (Of[M] ... IM)



Decoding Primal DQaI [ Arbra—Ge BKW ]

Bounded samples Unbounded samples



Methodology

Primal attack:

- Leaky-LWE framework:
https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3

-» Determining the block Size: we use the PIM (as opposed to GSA)
-» Fitting function for “dimensions for free”: same as Kyber/FrodoKEM

Arora-Ge:

> LWE estimator: https://lwe-estimator.readthedocs.io/en/latest/
_apidoc/estimator/estimator.arora_gh.html

-» Take rounding into account

BKW:
-» Based on Coded-BKW
-» Additional rounding not taken into account
> Next step: [BGJT20] and quantum


https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3
https://lwe-estimator.readthedocs.io/en/latest/_apidoc/estimator/estimator.arora_gb.html
https://lwe-estimator.readthedocs.io/en/latest/_apidoc/estimator/estimator.arora_gb.html

Attacks with Unbounded Samples

Arora-Ge: BKW:
> Algebraic attack (linearization) -» Combinatorial attack (lattice
=> Requires n°@ samples, where reduction + guessing)
d = max([|E']|o, [[E{llo) = Complexity: 200
Scheme [1E"ll 1E ]|
Kyber >5 > 100
Saber =8 > 16
FrodoKEM > 13 > 13
NTRU LPRime =3 > 288

In effect, the ||E/||~ are large thanks to bit dropping in the V.
-» Rules out Arora-Ge and BKW in practice!



Security Metrics at NIST Level 1 (=~ AES-128)

S = Samples, C = Classical, Q = Quantum, G = Gates, O = Operations.

Primal Arora-Ge BKW
Scheme S.. CG QG|S CO QO | S cCco Qo
Saber 512 152 142 | o 2646 TBD | o 158 TBD
Kyber 512 151 143 | oo 2408 TBD | oo 147 TBD
FrodoKEM | 656 175 164 | oo 2798 TBD | 0 226 TBD

Same trends at high security levels.




BilboKEM and llum

We propose lattice-based mKEMS that are tailored to mKEM constraints:
- “Standard”: Minimize |ct;]

> TreeKEM: Minimize T = min,, Ipl<|+llcc);§(l$\)ctz\~m

BilboKEM (variant of FrodoKEM) llum (variant of Kyber)




How do we minimize the bitsize of the V,?

Recall that M = Decode(V; — sk; - U).

We leverage the following tools:

/” Bit dropping: drop the least significant bits of V;
o Reduces the size of V, increase the LWE error rate
'® Increases the decryption failure rate

/” Coefficent dropping: drop superflous coefficients of V
s Reduces the size of V;
"¢ None!

/” Increase the modulus q
s Allows to pack more bits per coefficient of V;
'® Increases the size of U, decreases the LWE error rate

/” Error correcting codes (we discarded this option)

s Decreases the decryption failures rate
'® Timing attacks, delicate security analysis [DV\V/19, GJY19, DTVV19]



BilooKEM

FrodoKEM-640 | BilboKEM-640 | BilboKEM-624
Dimension n 640 640 624
Dimensions m x n 8x 8 8x 8 7x7=43+6
Modulus g 20 216 216
Std. dev. o 2.8 2.8 2.5
Bits dropped in V; O out of 15 13 out of 16 11 out of 16
(Key bits) / coef. 2 out of 15 2 out of 3 3outof 5
Lattice (S/CG/QG) 656/152/142 00/162/152 00/152/144
Arora-Ge (5/C0O/QO) 00/2798/TBD | 00/5124/TBD | 00/4847/TBD
BKW (S/CO/QO0O) 00/226/TBD o0/215/TBD 00/208/TBD
Decryption failure rate 2-138 2-147 2-182
Ipk| (bytes) 92600 10240 8736
|U| (bytes) 92600 10240 8736
|V;i| (bytes) 120 24 27
TreeKEM rate t* (bytes) | 4441 (m =53) | 3304 (m = 199) | 2972 (m = 159)

LAn update package in a group of N members has bytesize ~ T - log, (N) with arity m.



Kyber-512 llum-512-C lum-512-A
Ring degree n 256 256 256
Module rank ¢ 2 2 2
Modulus g 3329 7681 7681
Error param. (ny,1n,) (3, 2) (6,7) (4, 5)
Bits / coef. in (U, V)) (10, 4) (13, 3) (13, 2)
Coef. dropped in V; O out of 256 | 128 out of 256 | 128 out of 256
(Key bits) / coef. 1 outof4 1 outof 3 1 outof 2
Lattice (S/CG/QG) 512/151/143 | 00/150/142 00/144/136
Arora-Ge (S/CO/QO) | 00/2408/TBD | 00/3244/TBD | 00/2742/TBD
BKW (S/CO/QO) 00/147/TBD 00/170/TBD 00/170/TBD
Decryption failure rate 2-139 2142 2139
Ipk| (bytes) 768 832 832
|U| (bytes) 640 832 832
[V;i| (bytes) 128 48 32
TreeKEM rate (bytes) 767 (m =9) 595 (m = 18) 523 (m = 24)



D

®
Thank you!

https://eprint.iacr.org/2020/1107
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