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Main question

How efficiently can we share a session key K between (N + 1) users?

 Motivation: Secure group messaging
 Naive solution with El Gamal:

 Send
(
gri ,pkrii · K

)
for each user i

 Variant by Kurosawa [Kur02]:
 Send

(
gr,pkr1 · K, . . . ,pkrN · K

)
 Asymptotically, saves a factor 2

 Terminology: ciphertext compression,
mKEM/mPKE, randomness reuse, etc.

 [BBM00, BPS00, Kur02, BBS03, Sma05,
HK07, BF07, HTAS09, MH13, Yan15]

 No* post‐quantum proposal
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This work

 Revisiting mKPEs & mKEMs
 More natural definition
 Captures classical and post‐quantum assumptions
 QROM security

 Instantiation from post‐quantum assumptions
 Lattices
 Isogenies
 Efficiency increased by one or two orders of magnitude

 Application to TreeKEM
 Interplay mKEM × TreeKEM
 Communication cost divided by 2



Revisiting mPKEs
& mKEMs



Full reproducibility [BBS03]:

Enc(pk1,M) Enc(pk2,M′)
A( · ,pk1,pk2,sk2,M′)

Decomposability (this work):

Enc(pki,M) ct0 ĉti=
Encind(r0) Encdep(pki,M, r0, ri)

Example: El Gamal. Let a ciphertext ct = (gr,pkr1 · M) with pk1 = gsk1 .
 Full reproducibility: (gr, ∗) −→

(
gr, (gr)sk2 · M′).

 Decomposability: (ct0 = gr, ĉt1 = pkr1 · M).
A ciphertext with N recipients will be

→
ct = (ct0, ĉt1, . . . , ĉtN).

Key generation and decryption remain the same.



Decomp. IND-CPA mPKE⇒ IND-CCA mKEM

Encaps({pk1, . . . ,pkN})

1 Generate a random M
2 ct0 ← Encind(G1(M))
3 For i = 1, . . . ,N:
 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

4 K := H(M)
5 Return (K,

→
ct := (ct0, (ĉti)i∈[N]))

Decaps(pki,ct = (ct0, ĉti))

1 M← Dec(ski,ct)
2 If M = ⊥, return K := ⊥
3 ct0 ← Encind(G1(M))
4 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

5 If (ct0, ĉti) ̸= ct, return K := ⊥
6 Return K = H(M)

 G1,G2 are PRFs, H is a hash function, all are modeled as random oracles.
 QROM proof uses compressed oracles [Zha19].
 We can achieve implicit rejection as well.



Instantiation from
Post‐Quantum
Assumptions



The Lindner-Peikert framework [LP11]
Keygen (A ∈ Rm×mq )

1 Sample short matrices S,E
2 B← AS+ E
3 sk := (S,E),pk := B

Enc(pk,M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

Dec(sk,ct)

1 M← V−US
2 M← Decode(M)

Encompasses many NIST Round 3 candidates:
 FrodoKEM
 Kyber

 NTRU LPRime
 Saber



The Lindner‐Peikert framework is decomposable:
 Use the same A for all public keys.
 U is then independent of pk and M.

Enc(pk = (A,B),M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

=⇒

MultiEnc({pk1, . . . ,pkN},M)

1 Sample short matrices R,E′

2 U← RA+ E′

3 For i = 1, . . . , k:
1 E′′i ← χ5
2 Vi ← RBi + E′′i + Encode(M)

4
→
ct := (U,V1, . . . ,VN)

Each Vi is much smaller and faster to compute than U:
 Shorter dimensions
 Bit dropping
Security reduces to LWE with many samples.
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SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 sk := ψ, where ψ : E→ E/⟨RB⟩ is
an isogeny of kernel RB

2 pk := (E/⟨RB⟩,ψ(PA),ψ(QA))

Security reduces to SSDDH [DJP14].

Enc(pk,M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 Compute j = j‐Inv(E/⟨RA,RB⟩)
4 ĉt = j⊕ M
5 ct := (ct0, ĉt)

Dec(sk,ct)

1 Compute j = j‐Inv(E/⟨RA,RB⟩)
2 M = j⊕ ĉt



SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 ski := ψi, where ψi : E→ E/⟨RB⟩ is
an isogeny of kernel R(i)B

2 pk := (E/⟨R(i)B ⟩,ψi(PA),ψi(QA))

Security reduces to SSDDH [DJP14].

Enc({pk1, . . . ,pkN},M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 For i = 1, . . . ,N:

1 Compute ji = j‐Inv(E/⟨RA,R
(i)
B ⟩)

2 ĉti = ji ⊕ M
4

→
ct := (ct0, ĉt1, . . . , ĉtN)

Dec(ski, (ct0, ĉti))

1 Compute ji = j‐Inv(E/⟨RA,R(i)B ⟩)
2 M = ji ⊕ ĉti



Impact on 1 PKE + 4 KEMs (NIST level I)
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Application to
TreeKEM



TreeKEM [BBR18, BBM+20, OBR+20, ACDT20]:
 Key component of the MLS draft IETF proposal for group messaging
 The N users are arranged as leaves of a (binary) tree
 TreeKEM invariant:  knows a private if and only if it is in its path.
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Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
 One ct for each node in the co‐path (siblings of nodes in the path).
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What if we use a m‐ary tree instead of a binary tree?
 We send logm(N) public keys and (m− 1) · logm(N) ciphertexts
 However all ciphertexts at a same level encapsulate the same key!
 We can use a single mKEM ciphertext at each level
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Size of an update package:
 Standard TreeKEM: log2(N) · (|pk|+ |ct0|+ |ĉti|)
 m‐ary trees + mKEM: logm(N) · (|pk|+ |ct0|+ |ĉti| ·m)
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Size of an update package in kilobytes as
a function of number of users (NIST level I)
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Figure 1: TreeKEM with SIKE
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Figure 2: TreeKEM with FrodoKEM



Paper: https://eprint.iacr.org/2020/1107

Slides: https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf

https://eprint.iacr.org/2020/1107
https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf


Thank you!
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