
Scalable Ciphertext
Compression Techniques
for Post-Quantum KEMs
and their Applications

Shuichi Katsumata
AIST, JP

Kris Kwiatkowski
PQShield, UK

Federico Pintore
University of Oxford, UK

Thomas Prest
PQShield, UK

Main question

How efficiently can we share a session key K between (N + 1) users?

 Motivation: Secure group messaging
 Naive solution with El Gamal:

 Send
(
gri ,pkrii · K

)
for each user i

 Variant by Kurosawa [Kur02]:
 Send

(
gr,pkr1 · K, . . . ,pkrN · K

)
 Asymptotically, saves a factor 2

 Terminology: ciphertext compression,
mKEM/mPKE, randomness reuse, etc.

 [BBM00, BPS00, Kur02, BBS03, Sma05,
HK07, BF07, HTAS09, MH13, Yan15]

 No* post‐quantum proposal

This work

 Revisiting mKPEs & mKEMs
 More natural definition
 Captures classical and post‐quantum assumptions
 QROM security

 Instantiation from post‐quantum assumptions
 Lattices
 Isogenies
 Efficiency increased by one or two orders of magnitude

 Application to TreeKEM
 Interplay mKEM × TreeKEM
 Communication cost divided by 2

Revisiting mPKEs
& mKEMs

Full reproducibility [BBS03]:

Enc(pk1,M) Enc(pk2,M′)
A(· ,pk1,pk2,sk2,M′)

Decomposability (this work):

Enc(pki,M) ct0 ĉti=
Encind(r0) Encdep(pki,M, r0, ri)

Example: El Gamal. Let a ciphertext ct = (gr,pkr1 · M) with pk1 = gsk1 .
 Full reproducibility: (gr, ∗) −→

(
gr, (gr)sk2 · M′).

 Decomposability: (ct0 = gr, ĉt1 = pkr1 · M).
A ciphertext with N recipients will be

→
ct = (ct0, ĉt1, . . . , ĉtN).

Key generation and decryption remain the same.

Decomp. IND-CPA mPKE⇒ IND-CCA mKEM

Encaps({pk1, . . . ,pkN})

1 Generate a random M
2 ct0 ← Encind(G1(M))
3 For i = 1, . . . ,N:
 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

4 K := H(M)
5 Return (K,

→
ct := (ct0, (ĉti)i∈[N]))

Decaps(pki,ct = (ct0, ĉti))

1 M← Dec(ski,ct)
2 If M = ⊥, return K := ⊥
3 ct0 ← Encind(G1(M))
4 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

5 If (ct0, ĉti) ̸= ct, return K := ⊥
6 Return K = H(M)

 G1,G2 are PRFs, H is a hash function, all are modeled as random oracles.
 QROM proof uses compressed oracles [Zha19].
 We can achieve implicit rejection as well.

Instantiation from
Post‐Quantum
Assumptions

The Lindner-Peikert framework [LP11]
Keygen (A ∈ Rm×mq)

1 Sample short matrices S,E
2 B← AS+ E
3 sk := (S,E),pk := B

Enc(pk,M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

Dec(sk,ct)

1 M← V−US
2 M← Decode(M)

Encompasses many NIST Round 3 candidates:
 FrodoKEM
 Kyber

 NTRU LPRime
 Saber

The Lindner‐Peikert framework is decomposable:
 Use the same A for all public keys.
 U is then independent of pk and M.

Enc(pk = (A,B),M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

=⇒

MultiEnc({pk1, . . . ,pkN},M)

1 Sample short matrices R,E′

2 U← RA+ E′

3 For i = 1, . . . , k:
1 E′′i ← χ5
2 Vi ← RBi + E′′i + Encode(M)

4
→
ct := (U,V1, . . . ,VN)

Each Vi is much smaller and faster to compute than U:
 Shorter dimensions
 Bit dropping
Security reduces to LWE with many samples.

The Lindner‐Peikert framework is decomposable:
 Use the same A for all public keys.
 U is then independent of pk and M.

Enc(pk = (A,B),M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

=⇒

MultiEnc({pk1, . . . ,pkN},M)

1 Sample short matrices R,E′

2 U← RA+ E′

3 For i = 1, . . . , k:
1 E′′i ← χ5
2 Vi ← RBi + E′′i + Encode(M)

4
→
ct := (U,V1, . . . ,VN)

Each Vi is much smaller and faster to compute than U:
 Shorter dimensions
 Bit dropping
Security reduces to LWE with many samples.

SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 sk := ψ, where ψ : E→ E/⟨RB⟩ is
an isogeny of kernel RB

2 pk := (E/⟨RB⟩,ψ(PA),ψ(QA))

Security reduces to SSDDH [DJP14].

Enc(pk,M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 Compute j = j‐Inv(E/⟨RA,RB⟩)
4 ĉt = j⊕ M
5 ct := (ct0, ĉt)

Dec(sk,ct)

1 Compute j = j‐Inv(E/⟨RA,RB⟩)
2 M = j⊕ ĉt

SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 ski := ψi, where ψi : E→ E/⟨RB⟩ is
an isogeny of kernel R(i)B

2 pk := (E/⟨R(i)B ⟩,ψi(PA),ψi(QA))

Security reduces to SSDDH [DJP14].

Enc({pk1, . . . ,pkN},M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 For i = 1, . . . ,N:

1 Compute ji = j‐Inv(E/⟨RA,R
(i)
B ⟩)

2 ĉti = ji ⊕ M
4

→
ct := (ct0, ĉt1, . . . , ĉtN)

Dec(ski, (ct0, ĉti))

1 Compute ji = j‐Inv(E/⟨RA,R(i)B ⟩)
2 M = ji ⊕ ĉti

Impact on 1 PKE + 4 KEMs (NIST level I)

CSIDH SIKE Saber Kyber FrodoKEM

80

346

736 768

9,720

16 16
96 128 120

Si
ze
in
by
te
s

Normal ciphertext
Compressed (amortized)

Application to
TreeKEM

TreeKEM [BBR18, BBM+20, OBR+20, ACDT20]:
 Key component of the MLS draft IETF proposal for group messaging
 The N users are arranged as leaves of a (binary) tree
 TreeKEM invariant: knows a private if and only if it is in its path.

Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
 One ct for each node in the co‐path (siblings of nodes in the path).

TreeKEM [BBR18, BBM+20, OBR+20, ACDT20]:
 Key component of the MLS draft IETF proposal for group messaging
 The N users are arranged as leaves of a (binary) tree
 TreeKEM invariant: knows a private if and only if it is in its path .

Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
 One ct for each node in the co‐path (siblings of nodes in the path).

TreeKEM [BBR18, BBM+20, OBR+20, ACDT20]:
 Key component of the MLS draft IETF proposal for group messaging
 The N users are arranged as leaves of a (binary) tree
 TreeKEM invariant: knows a private if and only if it is in its path.

Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
 One ct for each node in the co‐path (siblings of nodes in the path).

What if we use a m‐ary tree instead of a binary tree?
 We send logm(N) public keys and (m− 1) · logm(N) ciphertexts
 However all ciphertexts at a same level encapsulate the same key!
 We can use a single mKEM ciphertext at each level

Size of an update package:
 Standard TreeKEM: log2(N) · (|pk|+ |ct0|+ |ĉti|)
 m‐ary trees + mKEM: logm(N) · (|pk|+ |ct0|+ |ĉti| ·m)

What if we use a m‐ary tree instead of a binary tree?
 We send logm(N) public keys and (m− 1) · logm(N) ciphertexts
 However all ciphertexts at a same level encapsulate the same key!
 We can use a single mKEM ciphertext at each level

Size of an update package:
 Standard TreeKEM: log2(N) · (|pk|+ |ct0|+ |ĉti|)
 m‐ary trees + mKEM: logm(N) · (|pk|+ |ct0|+ |ĉti| ·m)

What if we use a m‐ary tree instead of a binary tree?
 We send logm(N) public keys and (m− 1) · logm(N) ciphertexts
 However all ciphertexts at a same level encapsulate the same key!
 We can use a single mKEM ciphertext at each level

Size of an update package:
 Standard TreeKEM: log2(N) · (|pk|+ |ct0|+ |ĉti|)
 m‐ary trees + mKEM: logm(N) · (|pk|+ |ct0|+ |ĉti| ·m)

Size of an update package in kilobytes as
a function of number of users (NIST level I)

22 25 28 211 214
0

2

4

6

8

10

12
Binary
m‐ary

Figure 1: TreeKEM with SIKE

22 25 28 211 214
0

50

100

150

200

250

300
Binary
m‐ary

Figure 2: TreeKEM with FrodoKEM

Paper: https://eprint.iacr.org/2020/1107

Slides: https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf

https://eprint.iacr.org/2020/1107
https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf

Thank you!

Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the IETF MLS standard for group
messaging.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 248–277. Springer, Heidelberg,
August 2020.

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public‐key encryption in a multi‐user setting: Security proofs and
improvements.
In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
259–274. Springer, Heidelberg, May 2000.

Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel
Cohn‐Gordon, and Raphael Robert.
The Messaging Layer Security (MLS) Protocol.
Internet‐Draft draft‐ietf‐mls‐protocol‐09, Internet Engineering Task
Force, March 2020.
Work in Progress.

Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla.
TreeKEM: Asynchronous Decentralized Key Management for Large
Dynamic Groups A protocol proposal for Messaging Layer Security (MLS).
Research report, Inria Paris, May 2018.

Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon.
Randomness re‐use in multi‐recipient encryption schemeas.
In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 85–99.
Springer, Heidelberg, January 2003.

Manuel Barbosa and Pooya Farshim.
Randomness reuse: Extensions and improvements.
In Steven D. Galbraith, editor, 11th IMA International Conference on
Cryptography and Coding, volume 4887 of LNCS, pages 257–276.
Springer, Heidelberg, December 2007.

Olivier Baudron, David Pointcheval, and Jacques Stern.
Extended notions of security for multicast public key cryptosystems.
In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, ICALP 2000,
volume 1853 of LNCS, pages 499–511. Springer, Heidelberg, July 2000.

Luca De Feo, David Jao, and Jerome Plût.
Towards quantum‐resistant cryptosystems from supersingular elliptic
curve isogenies.
In Journal of Mathematical Cryptology, volume 8 (3), pages 209–247,
2014.
Dennis Hofheinz and Eike Kiltz.
Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
553–571. Springer, Heidelberg, August 2007.

Harunaga Hiwatari, Keisuke Tanaka, Tomoyuki Asano, and Koichi
Sakumoto.
Multi‐recipient public‐key encryption from simulators in security proofs.
In Colin Boyd and Juan Manuel González Nieto, editors, ACISP 09,
volume 5594 of LNCS, pages 293–308. Springer, Heidelberg, July 2009.

David Jao and Luca De Feo.
Towards quantum‐resistant cryptosystems from supersingular elliptic
curve isogenies.

In Bo‐Yin Yang, editor, Post‐Quantum Cryptography ‐ 4th International
Workshop, PQCrypto 2011, pages 19–34. Springer, Heidelberg,
November / December 2011.
Kaoru Kurosawa.
Multi‐recipient public‐key encryption with shortened ciphertext.
In David Naccache and Pascal Paillier, editors, PKC 2002, volume 2274 of
LNCS, pages 48–63. Springer, Heidelberg, February 2002.

Richard Lindner and Chris Peikert.
Better key sizes (and attacks) for LWE‐based encryption.
In Aggelos Kiayias, editor, CT‐RSA 2011, volume 6558 of LNCS, pages
319–339. Springer, Heidelberg, February 2011.

Takahiro Matsuda and Goichiro Hanaoka.
Key encapsulation mechanisms from extractable hash proof systems,
revisited.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume
7778 of LNCS, pages 332–351. Springer, Heidelberg, February / March
2013.

Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srinivas Inguva, Albert
Kwon, and Alan Duric.
The Messaging Layer Security (MLS) Architecture.
Internet‐Draft draft‐ietf‐mls‐architecture‐04, Internet Engineering Task
Force, January 2020.
Work in Progress.

Nigel P. Smart.
Efficient key encapsulation to multiple parties.
In Carlo Blundo and Stelvio Cimato, editors, SCN 04, volume 3352 of
LNCS, pages 208–219. Springer, Heidelberg, September 2005.

Zheng Yang.
On constructing practical multi‐recipient key‐encapsulation with short
ciphertext and public key.
SCN, 8(18):4191–4202, 2015.

Mark Zhandry.
How to record quantum queries, and applications to quantum
indifferentiability.

In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 239–268. Springer, Heidelberg,
August 2019.

	Revisiting mPKEs & mKEMs
	More natural assumptions
	Post-quantum security (QROM)

	Instantiation from Post-Quantum Assumptions
	Lattices
	Isogenies

	Application to TreeKEM

