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Main question

How efficiently can we share a session key K between (N + 1) users?

 Motivation: Secure group messaging
 Naive solution with El Gamal:

 Send
(
gri ,pkrii · K

)
for each user i

 Variant by Kurosawa [Kur02]:
 Send

(
gr,pkr1 · K, . . . ,pkrN · K

)
 Asymptotically, saves a factor 2

 Terminology: ciphertext compression,
mKEM/mPKE, randomness reuse, etc.

 [BBM00, BPS00, Kur02, BBS03, Sma05,
HK07, BF07, HTAS09, MH13, Yan15]

 No* post‐quantum proposal

 













This work

 Revisiting mKPEs & mKEMs
 More natural definition
 Captures classical and post‐quantum assumptions
 QROM security

 Instantiation from post‐quantum assumptions
 Lattices
 Isogenies
 Efficiency increased by one or two orders of magnitude

 Application to TreeKEM
 Interplay mKEM × TreeKEM
 Communication cost divided by 2



Revisiting mPKEs
& mKEMs



Full reproducibility [BBS03]:

Enc(pk1,M) Enc(pk2,M′)
A( · ,pk1,pk2,sk2,M′)

Decomposability (this work):

Enc(pki,M) ct0 ĉti=
Encind(r0) Encdep(pki,M, r0, ri)

Example: El Gamal. Let a ciphertext ct = (gr,pkr1 · M) with pk1 = gsk1 .
 Full reproducibility: (gr, ∗) −→

(
gr, (gr)sk2 · M′).

 Decomposability: (ct0 = gr, ĉt1 = pkr1 · M).
A ciphertext with N recipients will be

→
ct = (ct0, ĉt1, . . . , ĉtN).

Key generation and decryption remain the same.



Decomp. IND-CPA mPKE⇒ IND-CCA mKEM

Encaps({pk1, . . . ,pkN})

1 Generate a random M
2 ct0 ← Encind(G1(M))
3 For i = 1, . . . ,N:
 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

4 K := H(M)
5 Return (K,

→
ct := (ct0, (ĉti)i∈[N]))

Decaps(pki,ct = (ct0, ĉti))

1 M← Dec(ski,ct)
2 If M = ⊥, return K := ⊥
3 ct0 ← Encind(G1(M))
4 ĉti ←
Encdep(pki,M,G1(M),G2(pki,M))

5 If (ct0, ĉti) ̸= ct, return K := ⊥
6 Return K = H(M)

 G1,G2 are PRFs, H is a hash function, all are modeled as random oracles.
 QROM proof uses compressed oracles [Zha19].
 We can achieve implicit rejection as well.



Instantiation from
Post‐Quantum
Assumptions



The Lindner-Peikert framework [LP11]
Keygen (A ∈ Rm×mq )

1 Sample short matrices S,E
2 B← AS+ E
3 sk := (S,E),pk := B

Enc(pk,M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

Dec(sk,ct)

1 M← V−US
2 M← Decode(M)

Encompasses many NIST Round 3 candidates:
 FrodoKEM
 Kyber

 NTRU LPRime
 Saber



The Lindner‐Peikert framework is decomposable:
 Use the same A for all public keys.
 U is then independent of pk and M.

Enc(pk = (A,B),M)

1 Sample short matrices R,E′,E′′

2 U← RA+ E′

3 V← RB+ E′′ + Encode(M)
4 ct := (U,V)

=⇒

MultiEnc({pk1, . . . ,pkN},M)

1 Sample short matrices R,E′

2 U← RA+ E′

3 For i = 1, . . . , k:
1 E′′i ← χ5
2 Vi ← RBi + E′′i + Encode(M)

4
→
ct := (U,V1, . . . ,VN)

Each Vi is much smaller and faster to compute than U:
 Shorter dimensions
 Bit dropping
Security reduces to LWE with many samples.
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SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 sk := ψ, where ψ : E→ E/⟨RB⟩ is
an isogeny of kernel RB

2 pk := (E/⟨RB⟩,ψ(PA),ψ(QA))

Security reduces to SSDDH [DJP14].

Enc(pk,M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 Compute j = j‐Inv(E/⟨RA,RB⟩)
4 ĉt = j⊕ M
5 ct := (ct0, ĉt)

Dec(sk,ct)

1 Compute j = j‐Inv(E/⟨RA,RB⟩)
2 M = j⊕ ĉt



SIDH [JD11, DJP14] and SIKE

 E is an elliptic curve
 E[ℓaA] = ⟨PA,QA⟩
 E[ℓbB] = ⟨PB,QB⟩
Keygen(E, PA,QA, PB,QB)

1 ski := ψi, where ψi : E→ E/⟨RB⟩ is
an isogeny of kernel R(i)B

2 pk := (E/⟨R(i)B ⟩,ψi(PA),ψi(QA))

Security reduces to SSDDH [DJP14].

Enc({pk1, . . . ,pkN},M)

1 Sample an isogeny φ : E→ E/⟨RA⟩
2 ct0 = (E/⟨RA⟩,φ(PB),φ(QB))
3 For i = 1, . . . ,N:

1 Compute ji = j‐Inv(E/⟨RA,R
(i)
B ⟩)

2 ĉti = ji ⊕ M
4

→
ct := (ct0, ĉt1, . . . , ĉtN)

Dec(ski, (ct0, ĉti))

1 Compute ji = j‐Inv(E/⟨RA,R(i)B ⟩)
2 M = ji ⊕ ĉti



Impact on 1 PKE + 4 KEMs (NIST level I)
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Application to
TreeKEM



TreeKEM [BBR18, BBM+20, OBR+20, ACDT20]:
 Key component of the MLS draft IETF proposal for group messaging
 The N users are arranged as leaves of a (binary) tree
 TreeKEM invariant:  knows a private if and only if it is in its path.









 



 





 



 







 



 





 



 



















Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
 One ct for each node in the co‐path (siblings of nodes in the path).
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Users that are compromised can refresh their key material by broadcasting an
update package that contains:
 One pk for each node in the path (except the root) .
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What if we use a m‐ary tree instead of a binary tree?
 We send logm(N) public keys and (m− 1) · logm(N) ciphertexts
 However all ciphertexts at a same level encapsulate the same key!
 We can use a single mKEM ciphertext at each level





   



   



   



   

















Size of an update package:
 Standard TreeKEM: log2(N) · (|pk|+ |ct0|+ |ĉti|)
 m‐ary trees + mKEM: logm(N) · (|pk|+ |ct0|+ |ĉti| ·m)
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Size of an update package in kilobytes as
a function of number of users (NIST level I)

22 25 28 211 214
0

2

4

6

8

10

12
Binary
m‐ary

Figure 1: TreeKEM with SIKE
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Figure 2: TreeKEM with FrodoKEM



Paper: https://eprint.iacr.org/2020/1107

Slides: https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf

https://eprint.iacr.org/2020/1107
https://tprest.github.io/pdf/slides/mkem-ac-2020.pdf


Thank you!
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