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Hash-then-Sign



Initial attempts: NTRUSign (1997), GGHSign (2003)

Keygen(1λ)

1 Gen. matrices A,B such that:
A is pseudorandom
A · B = 0
B has small coefficients

2 pk := A, sk := B

Sign(msg, sk = B)

1 Compute c such that A · c = H(msg)
2 v := B

⌊
B−1c

⌉
3 sig := s = (c− v)

Verify(msg, pk = A, sig = s)

Check (s short) & (A · s = H(msg))

cv

Correctness: easy
Security: Finding a short preimage s of H(msg) should be difficult... or is it?
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The parallelepiped attack

Problem: The distribution of the signature s is correlated to B

s = c− B
⌊
B−1c

⌉
∈ B ·

[
−1
2
,
1
2

]n
(1)

cv

Given many signatures, B can be recovered using techniques from
Independent Component Analysis (ICA)

2006: key‐recovery on NTRUSign and GGHSign



Design-level solution: trapdoor sampling à la “GPV”

B
⌊
B−1c

⌉
B
⌊
B−1c

⌉
σ1 B

⌊
B−1

(
c+M ⌊0⌉σ2

)⌉
σ1

c c

Indistinguishability: For appropriately chosen parameters1, the rightmost procedure
outputs a distribution close to a perfect Gaussian DΛ(B),c,σ.

Consequence: these two worlds are indistinguishable (in the ROM)
1 Sample a short vector s, then set H(msg) = A · s
2 Compute H(msg), then use B to sample a short preimage s of H(msg)

1It suffices
(
σ22 ·MtM+ σ21 · BtB = σ2I

)
for σ large enough. See (Peikert, CRYPTO 2010)



Signature schemes in the GPV family

GPV sig‐
natures

NTRU
trapdoors

Micciancio‐
Peikert
trapdoors

Falcon

Mitaka

SOLMAE

[CGM19]

[ZY22]

Works in
progress...



Side-Channel
Attacks



Side-channel attacks in cryptography

Power consumption [KJJ99]

Timing measurement [Koc96]

Electromagnetic emissions [Eck85]

Acoustic emissions [AA04]



The return of the parallelepiped attacks

In Falcon, a signature is s = c− v, where v =
∑

i zi · bi for B = (bi)i and zi ∈ Z
Monitoring the power consumption can provide information about the zi.

This allows side‐channel assisted parallelepiped
attacks:

The Hidden Parallelepiped Is Back Again:
Power Analysis Attacks on Falcon
[GMRR22] (TCHES 2022)
Improved Power Analysis Attacks on Falcon
[ZLYW23] (Eurocrypt 2023)

Illustration when z0 ∈ {0,1}
[GMRR22]

In general, the most robust countermeasure against side‐channel attacks is masking.
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Masking and the t-probing model

t‐probing model
Adversary can probe t circuit values at runtime
Unrealistic but a good starting point

Masking
Each sensitive value x is split in d shares:JxK = (xj)j∈[d] such that

∑
j

xj = x (2)

Perform operations using MPC techniques.
Linear operations→ linear overhead
Multiplications→ quadratic
More complex operations→ ≥ quadratic

In “real life”, security is exponential in d
In t‐probing model, ideally 0 leakage if d > t



The design of Mitaka

Mitaka (Eurocrypt 2022) is designed to be easy maskable
(proof in the t‐probing model):

(simplified) The signing procedure is

v← B
⌊
B−1

(
c+M ⌊0⌉σ2

)⌉
σ1

⌊0⌉σ2 is sampled offline
Multiplications byM,B,B−1 are easy‐ish to mask
What about ⌊· · ·⌉σ1? (next slide)
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Masked Gaussian sampling

Figure 1:Masked discrete Gaussian sampling (in Z) in Mitaka

Main idea: sum of d Gaussians is a
√
d‐times larger Gaussian2

Complexity: O(d) per sample
2For simplicity, we ignore acc (we suppose acc is always 0)



The Attack



Proof outline and its flaw

ci,0 ci,1 ci,2 ci,3 ci,4 ci,5 ci,6 ci,7

zi,0 zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7

Uniform

Uniform
Proof outline:

The input is a uniform encoding JciK = (ci,j)j∈[d]
Same comment for the output JziK = (zi,j)j∈[d]
So probing should leak nothing... right?



Proof outline and its flaw

ci,0 ci,1 ci,2 ci,3 ci,4 ci,5 ci,6 ci,7

zi,0 zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7

Uniform

Uniform

Not uniform

Flaw/contradiction:
For each j, (ci,j − zi,j) is Gaussian
ci − zi =

∑
j(ci,j − zi,j) is correlated to ci,j − zi,j



The attack

Let us note v = B · z =
∑

i zi · bi the output of the trapdoor sampler.
v is distributed as a discrete Gaussian centered over c.

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6 c0,7

z0,0 z0,1 z0,2 z0,3 z0,4 z0,5 z0,6 z0,7

Uniform

Uniform

The set we probe

For each signing call we do this:
1 Probe (z0,j, c0,j) for j ∈ [t1], where t1 = ⌊d−12 ⌋
2 Compute w =

∑
j∈[t1](c0,j − z0,j)

3 Since w · b0 is an additive component of s = c− v, this value tends to be > 0:
⟨w · b0, s⟩ = ⟨w · s,b0⟩ (3)

This means the value w · s is biased in the same direction as b0.



The (return of the)2 parallelepiped attack

Estimator for b0:

b̂0 =
1(∑

ℓ∈[N] w2ℓ
) ·

∑
ℓ∈[N]

wℓ · sℓ

 . (4)

One can show that b̂0 ∼ b0 + X, where X is a Gaussian of parameter σX:

σX ≪ σ ·

√
d

t1 · N
(5)

where N is the number of signatures and traces.

Comments:
1 When N ≳ 221, we recover b0 using rounding (+ guessing)
2 When N ≲ 221, we recover b0 using lattice reduction
3 When N = Ω(d),3 we can recover b0 even with t = O(1)
3Large constant
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Figure 2: Distance ∥b̂0 − b0∥ as a function of # of traces (x‐axis) and the ratio t−1
2d .

Right‐side marks {λ = x}: core‐SVP hardness of lattice reduction.
Under { } line: immediate key‐recovery via rounding (+ guessing).
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