An Efficient Raccson—Slyle Non—Inletaclive
ThAeshald Signalute with Advanced Plogetlies

Giacomo Borin, Sofia Celi, Rafael del Pino, Thomas Espitau, Shuichi Katsumata,
Guilhem Niot, Thomas Prest, Kaoru Takemure

Do brave B!
o o o \"/ . -y 7
- POSHIELD @ AIST 3§ dcvemes

MPTS 2026: NIST Workshop on Multi-Party Threshold Schemes 2026

Executive Summary

Hermine = Raccoon (lattice-based) + FROST (two-round)
Good scalability (N < 64)
Advanced features:

Distributed Key Generation
Key Refresh
Identifiable Aborts

Raccoon.Keygen() — sk, vk

O vk =[A 1]-sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+c-sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

Raccoon: Schnorr over lattices

Schnorr.Keygen() — sk, vk

O vk = g5k, for sk uniform.

Schnorr.Sign(sk,msg) — sig

© Sampler
Ow=g
© c = H(w,msg)

Oz=r+c-sk
© Output sig = (c,2)

Schnorr.Verify(vk,msg,sig) — T /L

O w =g vk
@ Assert Hw',msg) =c

Security of Raccoon

Raccoon.Keygen() — sk, vk

O vk =[A 1]-sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+c-sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

vk is pseudorandom under Hint-MLWE

[I
(A, vk) is a (usual) MLWE sample
The signatures are noisy multiples
of sk.

As secure as MLWE, with o = O(1) if:

1 #Queries - ||c
, #Queries -]| _

2

7 = o1) (1)

Self-target MSIS: same as ML-DSA.

Security of Raccoon

Raccoon.Keygen() — sk, vk

O vk=2 [A 1] sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+2c sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

vk is pseudorandom under Hint-MLWE
[I:
(A, vk) is a (usual) MLWE sample

The signatures are noisy multiples
of sk.

As secure as MLWE, with o = O(1) if:

1 #Queries-
—+ Q”e”zsz 12l _ o1y
sk r

Self-target MSIS: same as ML-DSA.

Lattice
Threshold
Signatures
N
{ . . D
MPC-based ngfjlic(;/:/)fslght FHE-based
Trilithium }-—i Quorus —1ai—ng_o|

Lattice

Threshold

Signatures
/.

{ . . D
MPC-based L'gr.}:twf'ght FHE-based
N
{ B}
Secret sharing: Secret sharing: Secret sharing:

elican

Tanuﬁrhamlr + Additive Short + Additive Shamir + Sham|rp—l——|

Lattice
Threshold
Signatures

I\

(

MPC-based

Trilithium }-—i Quorus

Lightweight
Tools
N

N

FHE-based
Olingo

(

N

Secret sharing:

Secret sharing:
Short + Additive

Secret sharing:

@hamlr + Additive

elican

Shamir + Shamirp—j

’ Good scalability L\

Hermine

/’ Distributed keygen ‘

’ Identifiable aborts \

_\)’ Key refresh

|

FROST.Preprocess(...)
O risi«— 72
9 Rivsi — gri7gSI
© Output (R;,S))

FROST.Sign(...)
O vij,p; = H(j, vk, msg, (j,R;,5);)
b;
O R=[[R;-S
© c = H(R,vk,msg)
O Outputzi =r;+5;-pj+ ¢ - SK;j - Aj act

FROST.Combine(...)

© Compute c as in Round 2
® Output (c,z=3;7)

FROST

TS-UF-3 in the ROM under AOM-DL
(algebraic one-more discrete logarithm)

Unlike Schnorr, FROST uses two
nonces r;,s; and a randomizer p; in
order to resist ROS (Random Overde-
termined System) attacks.

Hermine

Hermine.Preprocess(...)

@ Sample short ris, ..., firep We require rep ~ 10 commitments per
O Vbe{l, . . rept,Wip=[A 1] -rp party instead of 2 for FROST.

© Output (wWjp),

O (By||...[IBrep) = H(vk,msg,act, (wjp);p)
O vVicact,wj=wj1+>, 4B, Wip
Ow-= Ejeact Wi

O c = H(w,vk,msg)

O zi=ri1+> 1By Tip+2 c SkKiact
0O Output z;

Hermine.Combine(...)

© Compute ¢ as in Sign()
® Output (c,z=Y,)

Hermine

© Sample short iy, ..., i rep We require rep ~ 10 commitments per

O Vbe{l, . . rept,Wip=[A 1] -rp party instead of 2 for FROST.
© Output (W;p)p

Hermine.Sign(...) Under AOM-MSIS |], Hermine is

© (B,]...|B.e,) = H(Vk, Msg, act, (Wj,);p) UEral=2 i e RO

@ Vjcact,w,= w1+ 3,18 Wip AOM-MSIS = “Algebraic Qne;More
Module Short Integer Solution
Ow-= Ejeact Wi

MSIS + MLWE = AOM-MSIS
O c = H(w,vk,msg)

©zi=ri1+> 4By tip+2-C-SkKijact
0O Output z;

Hermine.Combine(...)

© Compute ¢ as in Sign()
® Output (c,z=Y,)

Hermine

© Sample short iy, ..., fiep We require rep ~ 10 commitments per
O vbe {1, . repl,wip=[A 1.1 party instead of 2 for FROST.
© Output (W;p)p

Hermine.Sign(...) Under AOM-MSIS |], Hermine is

© (B,]...|B.e,) = H(Vk, Msg, act, (Wj,);p) UEral=2 i e RO

@ Vjcact,w,= w1+ 3,18 Wip AOM-MSIS = “Algebraic Qne;More
Module Short Integer Solution
Ow-= Ejeact Wi

MSIS + MLWE = AOM-MSIS
O c = H(w,vk,msg)

O zi=r1+> 1B Fip+2-C-SKjact

0O Output z; Shamir SSS (e.g. Tanuki): zero-shares
[] required for security.
Hermine.Combine(... Short Secret Sharing (Hermine):
@ Compute c as in Sign() sk act is guaranteed to be short.

® Output (c,z = Y,2) Security follows from Hint-MLWE.

O 3
O 3
O - 3O
-
-G —

-@—®

O 3
O 3
O - 3O
-
~C)—

“Short” secret sharing: we require that: Example: N-out-of-N sharing where:
@ If x is short, the shares X; are short = (X)1<ien < DY~tand xy = x — 'z Xi
© Reconstruction vectors As ; are short 2> Asi=1)

-@—®

O 3
O 3
O - 3O
-
~C)—

-@—®

“Short” secret sharing: we require that: Example: N-out-of-N sharing where:
@ If x is short, the shares X; are short = (X)1<ien < DY~tand xy = x — 'z Xi
© Reconstruction vectors As ; are short 2> Asi=1)

What about T < N?

Replicated secret sharing

We create one share s, for each subset of {1,...,N} of size N - T+ 1

Auseru e {1,...,N}isgivens,ifandonlyifu € J
The secretiss =)",

T-correctness: for each share s, exactly T — 1 users do not have it

(T — 1)-privacy: for any set act of size T — 1, no member of act has s;1 . ny\act
Short secret sharing: If the s; are short, this is a short secret sharing.

Exponential growth: The number of shares/party is (T 1) o(2M)

Replicated secret sharing

We create one share s, for each subset of {1,...,N} of size N - T+ 1

Auseru e {1,...,N}isgivens,ifandonlyifu € J
The secretiss =)",

T-correctness: for each share s, exactly T — 1 users do not have it
(T — 1)-privacy: for any set act of size T — 1, no member of act has s;1 . ny\act
Short secret sharing: If the s; are short, this is a short secret sharing.

Exponential growth: The number of shares/party is (7~1) = O(2V)

—

Figure 1: lllustration with (N, T) = (4, 3).

Replicated secret sharing

We create one share s, for each subset of {1,...,N} of size N - T+ 1

Auseru e {1,...,N}isgivens,ifandonlyifu € J
The secretiss =)",

T-correctness: for each share s, exactly T — 1 users do not have it
(T — 1)-privacy: for any set act of size T — 1, no member of act has s;1 . ny\act
Short secret sharing: If the s; are short, this is a short secret sharing.

Exponential growth: The number of shares/party is (7~1) = O(2V)

Figure 1: lllustration with (N, T) = (4, 3).

Recursive/Vandermonde secret sharing

ForO<T<N:

(-5 ()

Recursive secret sharing (Desmedt-Di Crescenzo-Burmester'94)

Turn Eq. (2) into a secret sharing:

L

© Enumerating all the possible disjunctions of the form in Eq. (2)
@ For each disjunction, share the secret s in two: s = sp + (5 — So) |

@ Recursively share s across members of actony2
@ Recursively share s — sy across members of actsy)2

N

Example: 4-out-of-8

o) o)
~ 0 o o o o o o

Example: 4-out-of-8

o) o)
~ 0 o o o o o o

Example: 4-out-of-8

N 0
0o O o g o o U

Example: 4-out-of-8

Example: 4-out-of-8

/\
0O 0 & ® O 0 O C

Fun-yet-useful facts:
—> Thisis a {—1,0, 1}-LSSS (Linear Integer Secret Sharing Scheme).
> Ifall s; are sampled form a short distribution, this is also a short secret sharing.

—> The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).

Efficiency comparison

T T T T T T
—e— Replicated
—=— Vandermonde
> 107 [n
g
I
Q
3
e 104 L |
I
R
wn
10! P |
| x_ | | | | |
0 5 10 15 20 25 30

T
Figure 2: Number of shares/party as a function of T (N = 8)

Efficiency comparison

T T T T T T
—e— Replicated
—=— Vandermonde
> 107 [n
g
I
Q
3
O 10% 2
I
R
wn
101 | I/.,,,.—[H]—.,,,.%" \ |
| | % | | |
0 5 10 15 20 25 30

T

Figure 2: Number of shares/party as a function of T (N = 16)

Efficiency comparison

T T T T w w
—e— Replicated
—=—Vand d
. 107 | andermonde | |
ju
(1]
o
@
e 104 L N
M
<
w - S TE EE Em mm mn o o Wl -
101 7/'/./I" I\-\. B
/ | | | | \ | |
0 5 10 15 20 25 30

Figure 2: Number of shares/party as a function of T (N = 24)

Efficiency comparison

T T T T T T
—e— Replicated

o 107 | —=— Vandermonde | |
g
I
Q
3

e 104 L |
I
R
wn

10t ™ ,

0

Figure 2: Number of shares/party as a function of T (N = 32)

Storage cost:
—> Vandermonde: up to ~ 1 MB
— Replicated: upto~ 1TB

Back to Hermine: Identifiable aborts

© Sample shortriq, ...l vep
O vbe{l, . rept,Wip=[A 1] -rp
© Output (Wip)p

Hermine.Sign(...)
Let VKjact = [A 1] - skjact.
o (BZ”"'HBrep) = H(Vk, msg, act, (Wj7b)j7b)
(2] Vj e act,w,- =Wj1+ Zb>1 Bb “Wip

(sKiact, VKi act) is a valid keypair
(c,z) is a valid “partial signature”

Ow=> W z; is short
O c = H(w,vk,msg) [A 1]-zi=w;+2-c-Vkjact
©z=ri1+5, .8y ip+2-C-SKiact We exploit this observation to identify
(6 Outpt.]t Z; : ’ ’ misbehaving parties.

1

Hermine.Combine(...)

© Compute ¢ as in Sign()
@ Output (c,z=Y,)

DKG and Key Refresh

Compute and distribute a short secret sharing (rk; act)j.act of O.

Privately send to each party i their private shares sk; st
Broadcast the partial verification keys vKjact = [A 1] - SKjact

Each party updates their known partial keys accordingly.

Each dealer j generates a keypair vk;, sk; and shares them among parties.

Public (partial) keys are broadcast.
Private (partial) keys are sent over a private channel.

Each party checks the validity of their own keypairs, and aggregates the keys.

Next steps

Implementation and experiments
Formalization

Your feedback:
Constraints?

Number of parties N

Threshold T
Sizes/communication/computation/storage
etc.

Do you need DKG?

Do you need Identifiable aborts?
Do you need Key Refresh?

Do you need other properties?

Thank you!

https://hermine-th.org/

@ Rafaél Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and Markku-Juhani O.
Saarinen.

Threshold raccoon: Practical threshold signatures from standard lattice assumptions.

In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part Il, volume 14652 of LNCS, pages 219-248.
Springer, Cham, May 2024.

@ Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Toward practical lattice-based proof of knowledge from hint-MLWE.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages
549-580. Springer, Cham, August 2023.

@ Chenzhi Zhu and Stefano Tessaro.

The algebraic one-more MISIS problem and applications to threshold signatures.

In Yael Tauman Kalai and Seny F. Kamara, editors, CRYPTO 2025, Part I, volume 16000 of LNCS, pages
548-581. Springer, Cham, August 2025.

	Starting Point: Raccoon
	Thresholdizing Lattices
	Hermine = Raccoon + FROST
	Short Secret Sharings?
	Advanced Properties

