
Hermine
An Efficient Raccoon-Style Non-Interactive

Threshold Signature with Advanced Properties

Giacomo Borin, Sofía Celi, Rafael del Pino, Thomas Espitau, Shuichi Katsumata,
Guilhem Niot, Thomas Prest, Kaoru Takemure

MPTS 2026: NIST Workshop on Multi‐Party Threshold Schemes 2026



Executive Summary

❆ Hermine = Raccoon (lattice‐based) + FROST (two‐round)
📶 Good scalability (N ≲ 64)
rocket Advanced features:

🔑 Distributed Key Generation
rotate-forward Key Refresh
👁 Identifiable Aborts



Starting Point:
Raccoon



Raccoon: Schnorr over lattices

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ = gz · vk−c

2 Assert H(w′,msg) = c



Security of Raccoon

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Pseudorandomness of vk
vk is pseudorandomunderHint‐MLWE
[KLSS23]:
→ (A,vk) is a (usual) MLWE sample
→ The signatures are noisy multiples
of sk.

As secure as MLWEσ with σ = O(1) if:

1
σ2sk

+
#Queries · ∥c∥

σ2r
= O(1) (1)

Unforgeability
Self‐target MSIS: same as ML‐DSA.



Security of Raccoon

Raccoon.Keygen()→ sk,vk
1 vk = 2 ·

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ 2 · c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Pseudorandomness of vk
vk is pseudorandomunderHint‐MLWE
[KLSS23]:
→ (A,vk) is a (usual) MLWE sample
→ The signatures are noisy multiples
of sk.

As secure as MLWEσ with σ = O(1) if:

1
σ2sk

+
#Queries · ∥2 · c∥

σ2r
= O(1) (1)

Unforgeability
Self‐target MSIS: same as ML‐DSA.



Thresholdizing
Lattices



Design choices

Lattice
Threshold
Signatures

Lightweight
ToolsMPC‐based FHE‐based

QuorusTrilithium Olingo

Secret sharing:
Short + Additive

Secret sharing:
Shamir + Additive

Secret sharing:
Shamir + Shamir

Tanuki Pelican

Hermine
Good scalability

Identifiable aborts

Distributed keygen

Key refresh



Design choices

Lattice
Threshold
Signatures

Lightweight
ToolsMPC‐based FHE‐based

QuorusTrilithium Olingo

Secret sharing:
Short + Additive

Secret sharing:
Shamir + Additive

Secret sharing:
Shamir + Shamir

Tanuki Pelican

Hermine
Good scalability

Identifiable aborts

Distributed keygen

Key refresh



Design choices

Lattice
Threshold
Signatures

Lightweight
ToolsMPC‐based FHE‐based

QuorusTrilithium Olingo

Secret sharing:
Short + Additive

Secret sharing:
Shamir + Additive

Secret sharing:
Shamir + Shamir

Tanuki Pelican

Hermine
Good scalability

Identifiable aborts

Distributed keygen

Key refresh



Hermine =
Raccoon + FROST



FROST

FROST.Preprocess(...)
1 ri, si ← Z2q
2 Ri, Si ← gri , gsi
3 Output (Ri, Si)

FROST.Sign(...)
1 ∀j, ρj = H(j,vk,msg, (j,Rj, Sj)j)
2 R =

∏
j Rj · S

ρj
j

3 c = H(R,vk,msg)
4 Output zi = ri + si · ρj + c · ski · λi,act

FROST.Combine(...)
1 Compute c as in Round 2
2 Output (c, z =

∑
j zj)

Security
TS‐UF‐3 in the ROM under AOM‐DL
(algebraic one‐more discrete logarithm)

ROS attacks
Unlike Schnorr, FROST uses two
nonces ri, si and a randomizer ρj in
order to resist ROS (Random Overde‐
termined System) attacks.



Hermine
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

ROS attacks
We require rep ≈ 10 commitments per
party instead of 2 for FROST.

Security
Under AOM‐MSIS [ZT25], Hermine is
TS‐sUF‐2 in the ROM.
→ AOM‐MSIS = “Algebraic One‐More

Module Short Integer Solution”
→ MSIS + MLWE⇒ AOM‐MSIS

Secret sharing
→ Shamir SSS (e.g. Tanuki): zero‐shares
[DKM+24] required for security.

→ Short Secret Sharing (Hermine):
ski,act is guaranteed to be short.
Security follows from Hint‐MLWE.



Hermine
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

ROS attacks
We require rep ≈ 10 commitments per
party instead of 2 for FROST.

Security
Under AOM‐MSIS [ZT25], Hermine is
TS‐sUF‐2 in the ROM.
→ AOM‐MSIS = “Algebraic One‐More

Module Short Integer Solution”
→ MSIS + MLWE⇒ AOM‐MSIS

Secret sharing
→ Shamir SSS (e.g. Tanuki): zero‐shares
[DKM+24] required for security.

→ Short Secret Sharing (Hermine):
ski,act is guaranteed to be short.
Security follows from Hint‐MLWE.



Hermine
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

ROS attacks
We require rep ≈ 10 commitments per
party instead of 2 for FROST.

Security
Under AOM‐MSIS [ZT25], Hermine is
TS‐sUF‐2 in the ROM.
→ AOM‐MSIS = “Algebraic One‐More

Module Short Integer Solution”
→ MSIS + MLWE⇒ AOM‐MSIS

Secret sharing
→ Shamir SSS (e.g. Tanuki): zero‐shares
[DKM+24] required for security.

→ Short Secret Sharing (Hermine):
ski,act is guaranteed to be short.
Security follows from Hint‐MLWE.



Short Secret
Sharings?



(Short) secret sharings

x Share

x⃗1

x⃗2

x⃗3

x⃗4

x⃗5

⟨
λ⃗S,1, x⃗1

⟩
⟨
λ⃗S,2, x⃗2

⟩

⟨
λ⃗S,5, x⃗5

⟩

+ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 Reconstruction vectors λ⃗S,i are short

Example: N‐out‐of‐N sharing where:
→ (xi)1≤i<N ← DN−1

σ and xN = x−
∑
i<N

xi
→ λS,i = 1

What about T < N?



(Short) secret sharings

x Share

x⃗1

x⃗2

x⃗3

x⃗4

x⃗5

⟨
λ⃗S,1, x⃗1

⟩
⟨
λ⃗S,2, x⃗2

⟩

⟨
λ⃗S,5, x⃗5

⟩

+ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 Reconstruction vectors λ⃗S,i are short

Example: N‐out‐of‐N sharing where:
→ (xi)1≤i<N ← DN−1

σ and xN = x−
∑
i<N

xi
→ λS,i = 1

What about T < N?



(Short) secret sharings

x Share

x⃗1

x⃗2

x⃗3

x⃗4

x⃗5

⟨
λ⃗S,1, x⃗1

⟩
⟨
λ⃗S,2, x⃗2

⟩

⟨
λ⃗S,5, x⃗5

⟩

+ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 Reconstruction vectors λ⃗S,i are short

Example: N‐out‐of‐N sharing where:
→ (xi)1≤i<N ← DN−1

σ and xN = x−
∑
i<N

xi
→ λS,i = 1

What about T < N?



Replicated secret sharing
Replicated secret sharing

cogs We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
〉 A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
〉 The secret is s =

∑
J sJ

🔒 T‐correctness: for each share sJ, exactly T− 1 users do not have it
lock-open (T− 1)‐privacy: for any set act of size T− 1, no member of act has s{1,...,N}\act
✔ Short secret sharing: If the sJ are short, this is a short secret sharing.
📶 Exponential growth: The number of shares/party is

(N−1
T−1

)
= O(2N)

1 2 3 4

12 1314 23 24 34

1 3 41 3

24

1 3

Figure 1: Illustration with (N, T) = (4,3).



Replicated secret sharing
Replicated secret sharing

cogs We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
〉 A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
〉 The secret is s =

∑
J sJ

🔒 T‐correctness: for each share sJ, exactly T− 1 users do not have it
lock-open (T− 1)‐privacy: for any set act of size T− 1, no member of act has s{1,...,N}\act
✔ Short secret sharing: If the sJ are short, this is a short secret sharing.
📶 Exponential growth: The number of shares/party is

(N−1
T−1

)
= O(2N)

1 2 3 4

1212 13131414 2323 2424 3434

1 3 4

1 3

24

1 3

Figure 1: Illustration with (N, T) = (4,3).



Replicated secret sharing
Replicated secret sharing

cogs We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
〉 A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
〉 The secret is s =

∑
J sJ

🔒 T‐correctness: for each share sJ, exactly T− 1 users do not have it
lock-open (T− 1)‐privacy: for any set act of size T− 1, no member of act has s{1,...,N}\act
✔ Short secret sharing: If the sJ are short, this is a short secret sharing.
📶 Exponential growth: The number of shares/party is

(N−1
T−1

)
= O(2N)

1 2 3 4

1212 13131414 2323 2424 3434

1 3 4

1 3

24

1 3

Figure 1: Illustration with (N, T) = (4,3).



Recursive/Vandermonde secret sharing

Vandermonde’s identity
For 0 ≤ T ≤ N: (

N
T

)
=

T∑
k=0

(
⌊N/2⌋

k

)
·
(
⌈N/2⌉
T− k

)
(2)

Recursive secret sharing (Desmedt‐Di Crescenzo‐Burmester’94)
Turn Eq. (2) into a secret sharing:

1 Enumerating all the possible disjunctions of the form in Eq. (2)
2 For each disjunction, share the secret s in two: s = s0 + (s− s0)

1 Recursively share s0 across members of act<N/2
2 Recursively share s− s0 across members of act≥N/2



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Efficiency comparison

0 5 10 15 20 25 30

101

104

107

T

Sh
ar
es
/p
ar
ty

Replicated
Vandermonde

Figure 2: Number of shares/party as a function of T (N = 8)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Efficiency comparison

0 5 10 15 20 25 30

101

104

107

T

Sh
ar
es
/p
ar
ty

Replicated
Vandermonde

Figure 2: Number of shares/party as a function of T (N = 16)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Efficiency comparison

0 5 10 15 20 25 30

101

104

107

T

Sh
ar
es
/p
ar
ty

Replicated
Vandermonde

Figure 2: Number of shares/party as a function of T (N = 24)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Efficiency comparison

0 5 10 15 20 25 30

101

104

107

T

Sh
ar
es
/p
ar
ty

Replicated
Vandermonde

Figure 2: Number of shares/party as a function of T (N = 32)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Advanced
Properties



Back to Hermine: Identifiable aborts
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

Identifiable aborts
Let vki,act =

[
A I

]
· ski,act.

→ (ski,act,vki,act) is a valid keypair
→ (c, zi) is a valid “partial signature”

1 zi is short
2

[
A I

]
· zi = wi + 2 · c · vki,act

We exploit this observation to identify
misbehaving parties.



DKG and Key Refresh

Key Refresh (KR)
1 Compute and distribute a short secret sharing (rkj,act)j,act of 0.

1 Privately send to each party i their private shares ski,act
2 Broadcast the partial verification keys vki,act =

[
A I

]
· ski,act

2 Each party updates their known partial keys accordingly.

Distributed Key Generation (DKG)
1 Each dealer j generates a keypair vkj,skj and shares them among parties.

1 Public (partial) keys are broadcast.
2 Private (partial) keys are sent over a private channel.

2 Each party checks the validity of their own keypairs, and aggregates the keys.



Next steps
🔧 Implementation and experiments

file-signature Formalization

🗩 Your feedback:
→ Constraints?

〉 Number of parties N
〉 Threshold T
〉 Sizes/communication/computation/storage
〉 etc.

→ Do you need DKG?
→ Do you need Identifiable aborts?
→ Do you need Key Refresh?
→ Do you need other properties?



Thank you!
https:^/hermine-th.org/



Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and Markku‐Juhani O.
Saarinen.
Threshold raccoon: Practical threshold signatures from standard lattice assumptions.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 219–248.
Springer, Cham, May 2024.

Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Toward practical lattice‐based proof of knowledge from hint‐MLWE.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages
549–580. Springer, Cham, August 2023.

Chenzhi Zhu and Stefano Tessaro.
The algebraic one‐more MISIS problem and applications to threshold signatures.
In Yael Tauman Kalai and Seny F. Kamara, editors, CRYPTO 2025, Part I, volume 16000 of LNCS, pages
548–581. Springer, Cham, August 2025.


	Starting Point: Raccoon
	Thresholdizing Lattices
	Hermine = Raccoon + FROST
	Short Secret Sharings?
	Advanced Properties

