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Executive Summary

Hermine = Raccoon (lattice-based) + FROST (two-round)
Good scalability (N < 64)
Advanced features:

Distributed Key Generation
Key Refresh
Identifiable Aborts







Raccoon.Keygen() — sk, vk

O vk =[A 1]-sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+c-sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

Raccoon: Schnorr over lattices

Schnorr.Keygen() — sk, vk

O vk = g5k, for sk uniform.

Schnorr.Sign(sk,msg) — sig

© Sampler
Ow=g
© c = H(w,msg)

Oz=r+c-sk
© Output sig = (c,2)

Schnorr.Verify(vk,msg,sig) — T /L

O w =g vk
@ Assert Hw',msg) =c




Security of Raccoon

Raccoon.Keygen() — sk, vk

O vk =[A 1]-sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+c-sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

vk is pseudorandom under Hint-MLWE

[ I
(A, vk) is a (usual) MLWE sample
The signatures are noisy multiples
of sk.

As secure as MLWE, with o = O(1) if:

1 #Queries - ||c
, #Queries - ]| _

2

7 = o1) (1)

Self-target MSIS: same as ML-DSA.



Security of Raccoon

Raccoon.Keygen() — sk, vk

O vk=2 [A 1] sk,forskshort.

Raccoon.Sign(sk,msg) — sig

@ Sample a short r
Ow=[A 1]-r

© c=H(w,msg)
Oz=r+2c sk

© Output sig = (c,2)

Raccoon.Verify(vk,msg,sig) — T/L

Ow=[A 1.-z—c-vk
@ Assert Hw',msg) =c
© Assert zis short

vk is pseudorandom under Hint-MLWE
[ I:
(A, vk) is a (usual) MLWE sample

The signatures are noisy multiples
of sk.

As secure as MLWE, with o = O(1) if:

1 #Queries-
—+ Q”e”zsz 12l _ o1y
sk r

Self-target MSIS: same as ML-DSA.
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FROST.Preprocess(...)
O risi«— 72
9 Rivsi — gri7gSI
© Output (R;,S))

FROST.Sign(...)
O vij,p; = H(j, vk, msg, (j,R;,5);)
b;
O R=[[R;-S
© c = H(R,vk,msg)
O Outputzi =r;+5;-pj+ ¢ - SK;j - Aj act

FROST.Combine(...)

© Compute c as in Round 2
® Output (c,z=3;7)

FROST

TS-UF-3 in the ROM under AOM-DL
(algebraic one-more discrete logarithm)

Unlike Schnorr, FROST uses two
nonces r;,s; and a randomizer p; in
order to resist ROS (Random Overde-
termined System) attacks.



Hermine

Hermine.Preprocess(...)

@ Sample short ris, ..., firep We require rep ~ 10 commitments per
O Vbe{l, . . rept,Wip=[A 1] -rp party instead of 2 for FROST.

© Output (wWjp),

O (By||...[IBrep) = H(vk,msg,act, (wjp);p)
O vVicact,wj=wj1+>, 4B, Wip
Ow-= Ejeact Wi

O c = H(w,vk,msg)

O zi=ri1+> 1By Tip+2 c SkKiact
0O Output z;

Hermine.Combine(...)

© Compute ¢ as in Sign()
® Output (c,z=Y,)




Hermine

© Sample short iy, ..., i rep We require rep ~ 10 commitments per

O Vbe{l, . . rept,Wip=[A 1] -rp party instead of 2 for FROST.
© Output (W;p)p

Hermine.Sign(...) Under AOM-MSIS | ], Hermine is

© (B,]...|B.e,) = H(Vk, Msg, act, (Wj,);p) UEral=2 i e RO

@ Vjcact,w,= w1+ 3,18 Wip AOM-MSIS = “Algebraic Qne;More
Module Short Integer Solution
Ow-= Ejeact Wi

MSIS + MLWE = AOM-MSIS
O c = H(w,vk,msg)

©zi=ri1+> 4By tip+2-C-SkKijact
0O Output z;

Hermine.Combine(...)

© Compute ¢ as in Sign()
® Output (c,z=Y,)




Hermine

© Sample short iy, ..., fiep We require rep ~ 10 commitments per
O vbe {1, .  repl,wip=[A 1.1 party instead of 2 for FROST.
© Output (W;p)p

Hermine.Sign(...) Under AOM-MSIS | ], Hermine is

© (B,]...|B.e,) = H(Vk, Msg, act, (Wj,);p) UEral=2 i e RO

@ Vjcact,w,= w1+ 3,18 Wip AOM-MSIS = “Algebraic Qne;More
Module Short Integer Solution
Ow-= Ejeact Wi

MSIS + MLWE = AOM-MSIS
O c = H(w,vk,msg)

O zi=r1+> 1B Fip+2-C-SKjact

0O Output z; Shamir SSS (e.g. Tanuki): zero-shares
[ ] required for security.
Hermine.Combine(... Short Secret Sharing (Hermine):
@ Compute c as in Sign() sk act is guaranteed to be short.

® Output (c,z = Y,2) Security follows from Hint-MLWE.
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“Short” secret sharing: we require that: Example: N-out-of-N sharing where:
@ If x is short, the shares X; are short = (X)1<ien < DY~tand xy = x — 'z Xi
© Reconstruction vectors As ; are short 2> Asi=1 )
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“Short” secret sharing: we require that: Example: N-out-of-N sharing where:
@ If x is short, the shares X; are short = (X)1<ien < DY~tand xy = x — 'z Xi
© Reconstruction vectors As ; are short 2> Asi=1 )

What about T < N?



Replicated secret sharing

We create one share s, for each subset of {1,...,N} of size N - T+ 1

Auseru e {1,...,N}isgivens,ifandonlyifu € J
The secretiss = )",

T-correctness: for each share s, exactly T — 1 users do not have it

(T — 1)-privacy: for any set act of size T — 1, no member of act has s;1 . ny\act
Short secret sharing: If the s; are short, this is a short secret sharing.

Exponential growth: The number of shares/party is (T 1) o(2M)




Replicated secret sharing

We create one share s, for each subset of {1,...,N} of size N - T+ 1

Auseru e {1,...,N}isgivens,ifandonlyifu € J
The secretiss = )",

T-correctness: for each share s, exactly T — 1 users do not have it
(T — 1)-privacy: for any set act of size T — 1, no member of act has s;1 . ny\act
Short secret sharing: If the s; are short, this is a short secret sharing.

Exponential growth: The number of shares/party is (7~1) = O(2V)

—

Figure 1: lllustration with (N, T) = (4, 3).




Replicated secret sharing
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Recursive/Vandermonde secret sharing

ForO<T<N:

(-5 ()

Recursive secret sharing (Desmedt-Di Crescenzo-Burmester'94)

Turn Eq. (2) into a secret sharing:

L

© Enumerating all the possible disjunctions of the form in Eq. (2)
@ For each disjunction, share the secret s in two: s = sp + (5 — So) |

@ Recursively share s across members of actony2
@ Recursively share s — sy across members of actsy)2

N




Example: 4-out-of-8
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Example: 4-out-of-8
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Example: 4-out-of-8




Example: 4-out-of-8
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Fun-yet-useful facts:
—> Thisis a {—1,0, 1}-LSSS (Linear Integer Secret Sharing Scheme).
> Ifall s; are sampled form a short distribution, this is also a short secret sharing.

—> The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).



Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 8)



Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 16)



Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 24)



Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 32)

Storage cost:
—> Vandermonde: up to ~ 1 MB
— Replicated: upto~ 1TB






Back to Hermine: Identifiable aborts

© Sample shortriq, ...l vep
O vbe{l, . rept,Wip=[A 1] -rp
© Output (Wip)p

Hermine.Sign(...)
Let VKjact = [A 1] - skjact.
o (BZ”"'HBrep) = H(Vk, msg, act, (Wj7b)j7b)
(2] Vj e act,w,- =Wj1+ Zb>1 Bb “Wip

(sKiact, VKi act) is a valid keypair
(c,z) is a valid “partial signature”

Ow=> W z; is short
O c = H(w,vk,msg) [A 1]-zi=w;+2-c-Vkjact
©z=ri1+5, .8y ip+2-C-SKiact We exploit this observation to identify
(6 Outpt.]t Z; : ’ ’ misbehaving parties.

1

Hermine.Combine(...)

© Compute ¢ as in Sign()
@ Output (c,z=Y,)




DKG and Key Refresh

Compute and distribute a short secret sharing (rk; act )j.act of O.

Privately send to each party i their private shares sk; st
Broadcast the partial verification keys vKjact = [A 1] - SKjact

Each party updates their known partial keys accordingly.

Each dealer j generates a keypair vk;, sk; and shares them among parties.

Public (partial) keys are broadcast.
Private (partial) keys are sent over a private channel.

Each party checks the validity of their own keypairs, and aggregates the keys.



Next steps

Implementation and experiments
Formalization

Your feedback:
Constraints?

Number of parties N

Threshold T
Sizes/communication/computation/storage
etc.

Do you need DKG?

Do you need Identifiable aborts?
Do you need Key Refresh?

Do you need other properties?



Thank you!

https://hermine-th.org/
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