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Executive Summary

❆ Hermine = Raccoon (lattice‐based) + FROST (two‐round)
📶 Good scalability (N ≲ 64)
rocket Advanced features:

🔑 Distributed Key Generation
rotate-forward Key Refresh
👁 Identifiable Aborts



Starting Point:
Raccoon



Raccoon: Schnorr over lattices

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk,vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ = gz · vk−c

2 Assert H(w′,msg) = c



Security of Raccoon

Raccoon.Keygen()→ sk,vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg,sig)→ ⊤/⊥
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Pseudorandomness of vk
vk is pseudorandomunderHint‐MLWE
[KLSS23]:
→ (A,vk) is a (usual) MLWE sample
→ The signatures are noisy multiples
of sk.

As secure as MLWEσ with σ = O(1) if:

1
σ2sk

+
#Queries · ∥c∥

σ2r
= O(1) (1)

Unforgeability
Self‐target MSIS: same as ML‐DSA.
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Thresholdizing
Lattices



Design choices

Lattice
Threshold
Signatures

Lightweight
ToolsMPC‐based FHE‐based

QuorusTrilithium Olingo

Secret sharing:
Short + Additive

Secret sharing:
Shamir + Additive

Secret sharing:
Shamir + Shamir

Tanuki Pelican

Hermine
Good scalability

Identifiable aborts

Distributed keygen

Key refresh
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Hermine =
Raccoon + FROST



FROST

FROST.Preprocess(...)
1 ri, si ← Z2q
2 Ri, Si ← gri , gsi
3 Output (Ri, Si)

FROST.Sign(...)
1 ∀j, ρj = H(j,vk,msg, (j,Rj, Sj)j)
2 R =

∏
j Rj · S

ρj
j

3 c = H(R,vk,msg)
4 Output zi = ri + si · ρj + c · ski · λi,act

FROST.Combine(...)
1 Compute c as in Round 2
2 Output (c, z =

∑
j zj)

Security
TS‐UF‐3 in the ROM under AOM‐DL
(algebraic one‐more discrete logarithm)

ROS attacks
Unlike Schnorr, FROST uses two
nonces ri, si and a randomizer ρj in
order to resist ROS (Random Overde‐
termined System) attacks.



Hermine
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

ROS attacks
We require rep ≈ 10 commitments per
party instead of 2 for FROST.

Security
Under AOM‐MSIS [ZT25], Hermine is
TS‐sUF‐2 in the ROM.
→ AOM‐MSIS = “Algebraic One‐More

Module Short Integer Solution”
→ MSIS + MLWE⇒ AOM‐MSIS

Secret sharing
→ Shamir SSS (e.g. Tanuki): zero‐shares
[DKM+24] required for security.

→ Short Secret Sharing (Hermine):
ski,act is guaranteed to be short.
Security follows from Hint‐MLWE.
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Short Secret
Sharings?



(Short) secret sharings

x Share

x⃗1

x⃗2

x⃗3

x⃗4

x⃗5

⟨
λ⃗S,1, x⃗1

⟩
⟨
λ⃗S,2, x⃗2

⟩

⟨
λ⃗S,5, x⃗5

⟩

+ x

“Short” secret sharing: we require that:
1 If x is short, the shares xi are short
2 Reconstruction vectors λ⃗S,i are short

Example: N‐out‐of‐N sharing where:
→ (xi)1≤i<N ← DN−1

σ and xN = x−
∑
i<N

xi
→ λS,i = 1

What about T < N?
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Replicated secret sharing
Replicated secret sharing

cogs We create one share sJ for each subset of {1, . . . ,N} of size N− T+ 1
〉 A user u ∈ {1, . . . ,N} is given sJ if and only if u ∈ J
〉 The secret is s =

∑
J sJ

🔒 T‐correctness: for each share sJ, exactly T− 1 users do not have it
lock-open (T− 1)‐privacy: for any set act of size T− 1, no member of act has s{1,...,N}\act
✔ Short secret sharing: If the sJ are short, this is a short secret sharing.
📶 Exponential growth: The number of shares/party is

(N−1
T−1

)
= O(2N)

1 2 3 4

12 1314 23 24 34

1 3 41 3

24

1 3

Figure 1: Illustration with (N, T) = (4,3).
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Recursive/Vandermonde secret sharing

Vandermonde’s identity
For 0 ≤ T ≤ N: (

N
T

)
=

T∑
k=0

(
⌊N/2⌋

k

)
·
(
⌈N/2⌉
T− k

)
(2)

Recursive secret sharing (Desmedt‐Di Crescenzo‐Burmester’94)
Turn Eq. (2) into a secret sharing:

1 Enumerating all the possible disjunctions of the form in Eq. (2)
2 For each disjunction, share the secret s in two: s = s0 + (s− s0)

1 Recursively share s0 across members of act<N/2
2 Recursively share s− s0 across members of act≥N/2



Example: 4-out-of-8

Recover with act = {1,2,3,7}

1, 2, 3, 7
s

1, 2, 3
s0

7
s− s0

1
s1

2, 3
s0 − s1

2
s2

3
s0 − s1 − s2

Fun‐yet‐useful facts:
→ This is a {−1,0,1}‐LSSS (Linear Integer Secret Sharing Scheme).

〉 If all si are sampled form a short distribution, this is also a short secret sharing.
→ The Share procedure needs to enumerate disjunctions, but this is rather efficient (more
than replicated secret sharing).
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Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 8)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB
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Figure 2: Number of shares/party as a function of T (N = 16)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB
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Figure 2: Number of shares/party as a function of T (N = 24)
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→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Efficiency comparison
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Figure 2: Number of shares/party as a function of T (N = 32)

Storage cost:
→ Vandermonde: up to ≈ 1 MB
→ Replicated: up to ≈ 1 TB



Advanced
Properties



Back to Hermine: Identifiable aborts
Hermine.Preprocess(...)

1 Sample short ri,1, ..., ri,rep
2 ∀b ∈ {1, ..., rep},wi,b =

[
A I

]
· ri,b

3 Output (wi,b)b

Hermine.Sign(...)
1 (β2∥...∥βrep) = H(vk,msg,act, (wj,b)j,b)

2 ∀j ∈ act,wj = wj,1 +
∑

b>1 βb ·wi,b

3 w =
∑

j∈actwj

4 c = H(w,vk,msg)
5 zi = ri,1 +

∑
b>1 βb · ri,b + 2 · c · ski,act

6 Output zi

Hermine.Combine(...)
1 Compute c as in Sign()
2 Output (c, z =

∑
j zj)

Identifiable aborts
Let vki,act =

[
A I

]
· ski,act.

→ (ski,act,vki,act) is a valid keypair
→ (c, zi) is a valid “partial signature”

1 zi is short
2

[
A I

]
· zi = wi + 2 · c · vki,act

We exploit this observation to identify
misbehaving parties.



DKG and Key Refresh

Key Refresh (KR)
1 Compute and distribute a short secret sharing (rkj,act)j,act of 0.

1 Privately send to each party i their private shares ski,act
2 Broadcast the partial verification keys vki,act =

[
A I

]
· ski,act

2 Each party updates their known partial keys accordingly.

Distributed Key Generation (DKG)
1 Each dealer j generates a keypair vkj,skj and shares them among parties.

1 Public (partial) keys are broadcast.
2 Private (partial) keys are sent over a private channel.

2 Each party checks the validity of their own keypairs, and aggregates the keys.



Next steps
🔧 Implementation and experiments

file-signature Formalization

🗩 Your feedback:
→ Constraints?

〉 Number of parties N
〉 Threshold T
〉 Sizes/communication/computation/storage
〉 etc.

→ Do you need DKG?
→ Do you need Identifiable aborts?
→ Do you need Key Refresh?
→ Do you need other properties?



Thank you!
https:^/hermine-th.org/
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