

Introduction

Hash-based signatures:

- Signatures based on the collision or preimage resistance of hash functions
- Optimal from a security perspective [Rom90]
- Post quantum: two proposals to NIST's CFP [AE17, BDE+17]

Obvious question: do they resist to fault attacks?

- Short answer: No.
- This talk: a fault attack against schemes of the SPHINCS family:
 - The original SPHINCS [BHH+15]
 - ➡ Gravity-SPHINCS [AE17]
 - ⇒ SPHINCS⁺ [BDE⁺17]

Outline of this talk

- 1 Introduction
- 2 Hash-based signatures
 - One-time signatures (OTS)
 - ② Merkle's construction
 - Goldreich's construction
 - **5** The SPHINCS framework
- **3** Grafting trees
 - ① Outline of the attack
 - ② Faulting step
 - ③ Grafting step
 - 4 Specifics of each scheme
- 4 Conclusion

One-time signatures (OTS) from hash functions

A toy example:

- \Rightarrow sk = $(s_1, s_2) \in \{0, 1\}^{256 \times 2}$
- \rightarrow pk = $(p_1, p_2) = (H^N(s_1), H^N(s_2))$
- \rightarrow Sign(m $\in \{0,\ldots,N\}$):

$$sig(m) = (\sigma_1, \sigma_2) = (H^m(s_1), H^{N-m}(s_2))$$
 (1)

- \rightarrow Verify(m, sig): accept if and only if $(H^{N-m}(\sigma_1), H^m(\sigma_2)) = pk$
- → one signature ⇒ existentially unforgeable
- \Rightarrow two signatures \Rightarrow existential forgery for a proportion $\approx \frac{|\mathsf{m}_1 \mathsf{m}_2|}{N}$ of the messages

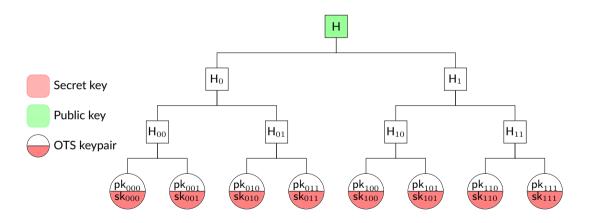
One-time signatures (OTS) from hash functions

A tov example:

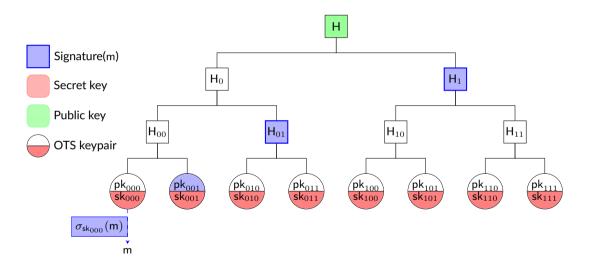
- \Rightarrow sk = $(s_1, s_2) \in \{0, 1\}^{256 \times 2}$
- $pk = (p_1, p_2) = (H^N(s_1), H^N(s_2))$
- \rightarrow Sign(m $\in \{0, \dots, N\}$):

$$sig(m) = (\sigma_1, \sigma_2) = (H^m(s_1), H^{N-m}(s_2))$$
 (1)

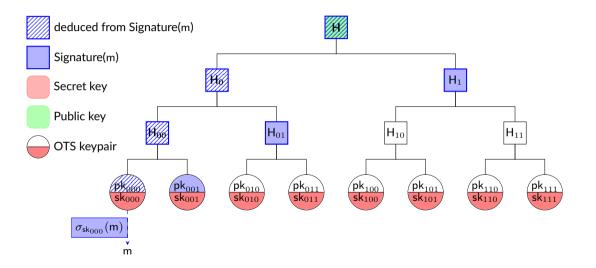
- \rightarrow Verify(m, sig): accept if and only if $(H^{N-m}(\sigma_1), H^m(\sigma_2)) = pk$
- → one signature ⇒ existentially unforgeable
- * two signatures \Rightarrow existential forgery for a proportion $\approx \frac{|m_1 m_2|}{N}$ of the messages

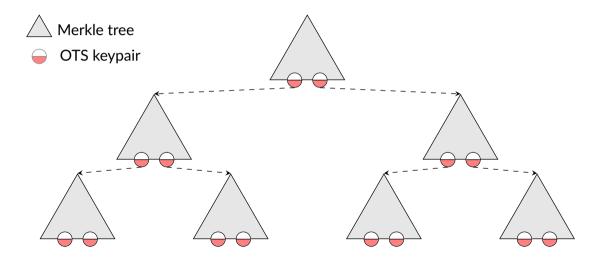

For WOTS(+), the OTS used in schemes of the SPHINCS family:

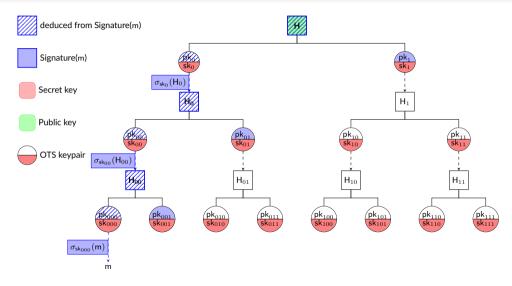
- \rightarrow one signature \Rightarrow existentially unforgeable
- \Rightarrow two signatures \Rightarrow existential forgery for a proportion 2^{-34} of the messages

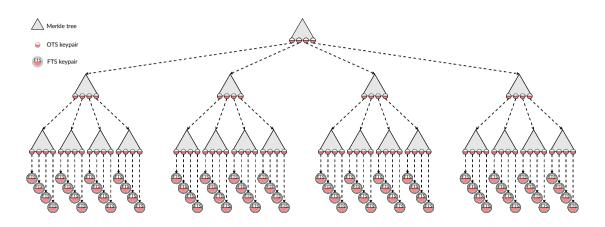

Feature common to all hash-based signatures:

From a valid signature, one can recover the public key.


Merkle's construction [Mer90]


Merkle's construction [Mer90]


Merkle's construction [Mer90]


Goldreich's construction (abstract) [Gol86]

Goldreich's construction (detailed)

The SPHINCS framework

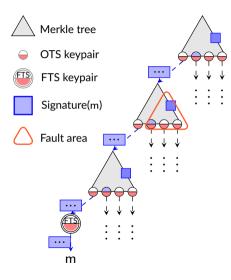
- ➤ Common to SPHINCS [BHH+15], Gravity-SPHINCS [AE17] and SPHINCS+ [BDE+17]
- Typical parameters: layers = 8, height of each Merkle tree = 8, total height = 64

Outline of the attack

Observations useful for our attack:

▶ In all hash-based signatures:

[a valid signature
$$\sigma_{sk}(m)$$
] \Rightarrow [one can recover pk]

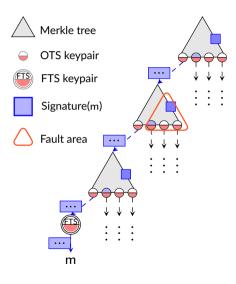

For the OTS used in SPHINCS:

[2 signatures] \Rightarrow [one can forge for 1 message over 2^{34}]

Outline of our attack:

- Faulting step. We provoke a fault to make an OTS sign two different values
- 2 Grafting step. We use the compromised OTS to obtain an universal forgery

The faulting step


The faulting step:

- One normal sig(m), one faulted sig(m)
- Target the Merkle tree just below the top
- We may fault any computation "below" the authentication path

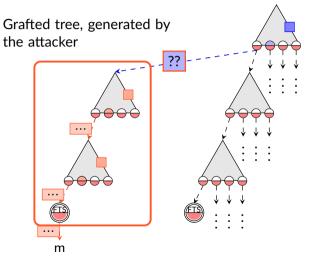
Regular vs faulted signature:

- → Two ≠ values are computed for the root of the faulted Merkle tree
- ightharpoonup The top OTS signs two \neq values

The faulting step

The faulting step:

- One normal sig(m), one faulted sig(m)
- Target the Merkle tree just below the top
- We may fault any computation "below" the authentication path


Regular vs faulted signature:

- → Two ≠ values are computed for the root of the faulted Merkle tree
- The top OTS signs two \neq values

Features of this fault:

- One fault
- Little precision required
- Stealthy

The grafting step

Goal of the attacker:

>> Sign his own tree with the compromised OTS

Naïve approach:

- Generate trees until a suitable one is found
- \rightarrow Time: $2^{34} \times$ (generate a tree)

Adaptive approach:

- Only modify the top of the grafted tree
- \rightarrow Time: 2^{34} + (generate a tree)

Specifics of each scheme and countermeasures

Selection of the FTS index:

- **1** SPHINCS: $idx \leftarrow H(r, m)$, where r is private \Rightarrow very easy
- **2** Gravity-SPHINCS: $idx \leftarrow H(r, m)$, where $r \leftarrow H(sk, m)$ \Rightarrow easy
- 3 SPHINCS⁺: idx \leftarrow H(r, pk, m), where $r \leftarrow$ H(sk, \$, m) ⇒ no control on the FTS index anymore, but still easy

Height of the top Merkle tree:

- SPHINCS and SPHINCS⁺: no more than 8
- @ Gravity-SPHINCS: 20

Countermeasures:

- Generic: redundancy
- 2 Specific: ?

ntroduction Hash-based signatures Grafting trees Conclusion

0000 0000 0000 0000

Conclusion

Key takeaways:

- A fault attack on schemes of the SPHINCS family
- Universal forgery with one fault
- Fault model is very weak:
 - 1) little to no control on the time of the fault
 - 2 little to no control on the precision of the fault
 - independent of underlying hash function(s)
- Stealthy
- Specific countermeasures are ineffective (to our knowledge)

troduction Hash-based signatures Grafting trees Conclusion
O 0000 0000 0000 •O

Conclusion

Key takeaways:

- A fault attack on schemes of the SPHINCS family
- Universal forgery with one fault
- Fault model is very weak:
 - 1) little to no control on the time of the fault
 - 2 little to no control on the precision of the fault
 - independent of underlying hash function(s)
- Stealthy
- Specific countermeasures are ineffective (to our knowledge)

Related works:

- This work was based on Laurent Castelnovi's Master thesis [Cas17]
- Independently studied by Genêt [Gen17] and Kannwischer [Kan17]

https://eprint.iacr.org/2018/102

Thanks!

Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based signatures.

Cryptology ePrint Archive, Report 2017/933, 2017.

https://eprint.iacr.org/2017/933.

Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tania Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, and Peter Schwabe. SPHINCS+, 2017.

https://sphincs.org/.

Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O'Hearn. SPHINCS: practical stateless hash-based signatures. In EUROCRYPT 2015, volume 9056 of LNCS, pages 368-397, Springer, 2015.

Sécurité physique de schémas cryptographiques post-quantiques.

Master thesis, 2017.

Available at https://tprest.github.io/Publications/rapport-laurent-castelnovi.pdf.

Avmeric Genêt.

Hardware attacks against hash-based cryptographic algorithms.

Master thesis, 2017.

Available at https://infoscience.epfl.ch/record/253317.

Two remarks concerning the Goldwasser-Micali-Rivest signature scheme.

In CRYPTO '86, volume 263 of LNCS, pages 104-110. Springer, 1986.

Physical attack vulnerability of hash-based signature schemes.

Master thesis, 2017.

Available at https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/theses/Matthias_Kannwischer.master.pdf.

A certified digital signature.

In CRYPTO' 89, volume 435 of LNCS, pages 218-238. Springer, 1990.

One-way functions are necessary and sufficient for secure signatures.

In STOC, pages 387-394. ACM, 1990.