Introduction

Outline of this talk

- 1 Introduction
- 2 Hash-based signatures
 - One-time signatures (OTS)
 - Merkle's construction
 - ③ Goldreich's construction
 - (5) The SPHINCS framework
- 3 Grafting trees
 - Outline of the attack
 - 2 Faulting step
 - 3 Grafting step
 - Specifics of each scheme
- 4 Conclusion

Hash-based signatures:

- Signatures based on the collision or preimage resistance of hash functions
- Optimal from a security perspective [Rom90]
- → Post quantum: two proposals to NIST's CFP [AE17, BDE+17]

Obvious question: do they resist to fault attacks?

- Short answer: No.
- This talk: a fault attack against schemes of the SPHINCS family:
 - → The original SPHINCS [BHH+15]
 - Gravity-SPHINCS [AE17]
 - ➤ SPHINCS+ [BDE+17]

Introduction

Hash-based signatures:

- Signatures based on the collision or preimage resistance of hash functions
- Optimal from a security perspective [Rom90]
- → Post quantum: two proposals to NIST's CFP [AE17, BDE+17]

Obvious question: do they resist to fault attacks?

- Short answer: No.
- This talk: a fault attack against schemes of the SPHINCS family:
 - The original SPHINCS [BHH+15]
 - ➡ Gravity-SPHINCS [AE17]
 - SPHINCS+ [BDE+17]

One-time signatures (OTS) from hash functions

A toy example:

- \Rightarrow sk = $(s_1, s_2) \in \{0, 1\}^{256 \times 2}$
- \rightarrow pk = $(p_1, p_2) = (H^N(s_1), H^N(s_2))$
- \rightarrow Signature of a message m ∈ {0,..., N}:

$$sig(m) = H^{m(s_1),H^{N-m}(s_2)(1)}$$

- → one signature ⇒ existentially unforgeable
- \Rightarrow two signatures \Rightarrow existential forgery for a proportion $\approx \frac{|m_1-m_2|}{N}$ of the messages

One-time signatures (OTS) from hash functions

A toy example:

- \Rightarrow sk = $(s_1, s_2) \in \{0, 1\}^{256 \times 2}$
- \rightarrow pk = $(p_1, p_2) = (H^N(s_1), H^N(s_2))$
- \rightarrow Signature of a message m ∈ {0,..., N}:

$$sig(m) = H^{m(s_1),H^{N-m}(s_2)(1)}$$

- → one signature ⇒ existentially unforgeable
- \Rightarrow two signatures \Rightarrow existential forgery for a proportion $\approx \frac{|m_1-m_2|}{N}$ of the messages

For WOTS(+), the OTS used in schemes of the SPHINCS family:

- → one signature ⇒ existentially unforgeable
- \rightarrow two signatures \Rightarrow existential forgery for a proportion 2^{-34} of the messages

Goldreich's construction (abstract) [Gol86]

Goldreich's construction (detailed)

The SPHINCS framework (abstract)

- Common to SPHINCS [BHH+15], Gravity-SPHINCS [AE17] and SPHINCS+ [BDE+17]
- → Typical parameters: layers = 8, height of each Merkle tree = 8, total height = 64

The SPHINCS framework (detailed)

The SPHINCS framework (detailed)

Observations useful for our attack:

>> In all hash-based signatures:

[a valid signature $\sigma_{sk}(m)$] \Rightarrow [one can recover pk]

For the OTS used in SPHINCS:

[2 signatures] \Rightarrow [one can forge for 1 message over 2^{34}]

Outline of our attack:

- Faulting step. We provoke a fault to make an OTS sign two different values
- 2 Grafting step. We use the compromised OTS to obtain an universal forgery

m

The faulting step:

- One normal sig(m), one faulted sig(m)
- Target the Merkle tree just below the top
- We may fault any computation "below" the authentication path

Regular vs faulted signature:

- Two ≠ values are computed for the root of the faulted Merkle tree
- The top OTS signs two ≠ values

Features of this fault:

- Stealthy
- One fault
- Little precision required

The grafting step

Grafted tree, generated by the attacker

Goal of the attacker:

Sign his own tree with the compromised OTS

Naïve approach:

- → Generate trees until a suitable one is found
- → Time: 2³⁴ × (generate a tree)

Adaptive approach:

- Only modify the top of the grafted tree
- → Time: 2³⁴+ (generate a tree)

Index selection:

- **1** SPHINCS: $idx \leftarrow H(r, m)$, where r is private ⇒ very easy
- ② Gravity-SPHINCS: $idx \leftarrow H(r, m)$, where $r \leftarrow H(sk, M)$ ⇒ easy
- **③** SPHINCS⁺: $idx \leftarrow H(r, pk, m)$, where $r \leftarrow H(sk, \$, M)$ ⇒ no control on the FTS index anymore, but still easy

oduction Hash-based signatures Grafting trees Conclusion

00000 0000 0000

Conclusion

Key takeaways:

- A fault attack on schemes of the SPHINCS family
- 2 Universal forgery in one signature
- Fault model is very weak:
 - 1) little to no control on the time of the fault
 - 2 little to no control on the precision of the fault
 - independent of underlying hash function(s)
- Stealthy
- Specific countermeasures are ineffective (to our knowledge)

Related works:

- This work was based on Laurent Castelnovi's Master thesis [Cas17]
- Independently studied by Genêt [Gen17] and Kannwischer [Kan17]

Thanks!

Jean-Philippe Aumasson and Guillaume Endignoux.

Improving stateless hash-based signatures.

Cryptology ePrint Archive, Report 2017/933, 2017.

https://eprint.iacr.org/2017/933.

Daniel I. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, and Peter Schwabe.

SPHINCS+, 2017.

https://sphincs.org/.

Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O'Hearn.

SPHINCS: practical stateless hash-based signatures.

In EUROCRYPT 2015, volume 9056 of LNCS, pages 368-397, Springer, 2015.

Laurent Castelnovi.

SÃl'curitÃl' physique de schÃl'mas cryptographiques post-quantique. Master thesis. 2017.

Available at

https://tprest.github.io/Publications/rapport-laurent-castelnovi.pdf.

Hardware attacks against hash-based cryptographic algorithms. Master thesis. 2017.

Available at https://infoscience.epfl.ch/record/253317.

Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In CRYPTO '86, volume 263 of LNCS, pages 104-110. Springer, 1986.

Matthias Kannwischer.

Physical attack vulnerability of hash-based signature schemes.

Master thesis. 2017.

Available at https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_ upload/Group_CDC/Documents/theses/Matthias_Kannwischer.master.pdf.

Ralph C. Merkle.

A certified digital signature.

In CRYPTO' 89, volume 435 of LNCS, pages 218–238. Springer, 1990.

John Rompel.

One-way functions are necessary and sufficient for secure signatures.

Conclusion

In STOC, pages 387-394. ACM, 1990.