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Mo va on: GPV signatures over NTRU la ces
This talk: step 2 of Sign

Keygen(1λ)

1 Gen. matrices A,B s.t.:
 BA = 0
 B has small coefficients

2 pk := A, sk := B

Sign(msg, sk = B)

1 Compute c such that
cA = H(msg)

2 v← vector in L(B), close to c
3 sig := s = (c− v)

Verify(msg, pk = B, sig = s)

Check (s short) & (sA = H(msg))
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Focus of this talk:

Given B and c, how do we efficiently (and securely) compute v ∈ L(B) close to v?

Two parts:
1 Fast Fourier orthogonaliza on [DP16]

 Purely algorithmic/algebraic
2 From FFO to fast Fourier sampling [Pre17, PFH+17]

 Sta s cal arguments (Rényi divergence)



Fast Fourier
Orthogonaliza on



Gram-Schmidt orth. (GSO):

Given B ∈ Rn×m full-rank, com-
pute:

B = L× B̃ (1)

where:
 L is lower triangular with 1’s

on its diagonal
 B̃ has orthogonal rows

Can be done in me O(mn2)

LDL decomposi on:

Given G ∈ Cn×n self-adjoint (i.e.
G∗ = G), compute:

G = L× D̃× L∗ (2)

where:
 L is lower triangular with 1’s

on its diagonal
 D is diagonal

Can be done in me O(n3)

Fun fact 1: When G = B× B∗, the GSO and LDL are equivalent.

Fun fact 2: The GSO and LDL generalize to rings/fields of the form Q[x]/(ϕ)
with adequate defini ons of adjoint/inner product.
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How to compute efficiently a close vector:

RoundOff(B, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj
⌋

3 Return v := z · B

⇓

NearestPlane(B, L, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj +

∑
i>j(t1 − zi)Li,j

⌋
3 Return v := z · B

⇓



It is common to take matrices/vectors with coefficients in R = Zq[x]/(ϕ),
where ϕ can be:

1 A convolu on polynomial xn − 1
2 A cyclotomic polynomial, e.g. xn + 1 for n a power-of-two
3 Another polynomial, e.g. xp − x− 1 as in NTRU Prime

The techniques we describe provide speed-ups for subsets of 1 and 2

(tower of rings), but not 3 .

We focus on ϕ = xn + 1 with n = 2κ, and note Kn = Q[x]/(xn + 1).

Our goal: provide a faster NearestPlane algorithm over towers of rings:
1 Compact representa on of the orthogonaliza on
2 How to use this compact representa on

Generalize to module la ces (with base ring a tower of rings).
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If no obvious way to exploit the ring structure, one can map everything to Z
(or Q). For example, this ring endomorphism

T : K4 → K4
g(x) 7→ (a+ bx+ cx2 + dx3) · g(x)

can be interpreted as the endomorphism of Q4 with this associated matrix
over the canonical basis {1, x, x2, x3}:

1 x x2 x3


a b c d 1

−d a b c x

−c −d a b x2

−b −c −d a x3



Problem: the power basis is not adequate for GSO/LDL!

B︷ ︸︸ ︷
a b c d
−d a b c
−c —d a b
−b −c −d a

 =

L︷ ︸︸ ︷
1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1

×
B̃︷ ︸︸ ︷

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


Consequence: not obvious that the ring structure provide a gain Õ(n):
 in storage (storing L)
 in computa on (using L in NearestPlane())

Lets find a be er representa on!



Observa on: Represen ng T in the basis {1, x2, x, x3} instead of {1, x, x2, x3}
gives: 

a c b d
−c a −d b
−d b a c
−b −d −c a

 (3)

More formally: If we write f ∈ Kn in the Kn/2-basis {1, x}:

f(x) = f0(x2) + x · f1(x2) (4)

with f0, f1 ∈ Kn/2, the transforma on matrix of T : g ∈ Kn 7→ f · g is:[
f0 f1

x · f1 f0

]
(5)

Note: This change of basis is a ring morphism that is also an isometry!



Fun fact 3: Dis nct morphisms allow various levels of granularity.

{1, x, . . . , x7}︷ ︸︸ ︷

a b c d 0 -d -c -b
b a b c d 0 -d -c
c b a b c d 0 -d
d c b a b c d 0
0 d c b a b c d
-d 0 d c b a b c
-c -d 0 d c b a b
-b -c -d 0 d c b a


⇒

{1, x2, x4, x6|x, x3, x5, x7}︷ ︸︸ ︷

a c 0 -c b d -d -b
c a c 0 b b d -d
0 c a c d b b d
-c 0 c a -d d b b
b b d -d a c 0 -c
d b b d c a c 0
-d d b b 0 c a c
-b -d d b -c 0 c a



So what’s the point? We combine the facts 1 to 3:
1 GSO⇔ LDL
2 We can generalize the GSO/LDL to rings like Kn

3 Kn ∼= (Kn′)
n/n′ via an isomorphism that is also an isometry.
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Suppose we have a nega-circulant Gram matrix.

Step 1: “break” the matrix



a b c d 0 -d -c -b
b a b c d 0 -d -c
c b a b c d 0 -d
d c b a b c d 0
0 d c b a b c d
-d 0 d c b a b c
-c -d 0 d c b a b
-b -c -d 0 d c b a


⇒



a c 0 -c b d -d -b
c a c 0 b b d -d
0 c a c d b b d
-c 0 c a -d d b b
b b d -d a c 0 -c
d b b d c a c 0
-d d b b 0 c a c
-b -d d b -c 0 c a





Suppose we have a nega-circulant Gram matrix.

Step 1: “break” the matrix
Step 2: Orthogonalize over Kn/2

a c 0 -c b d -d -b
c a c 0 b b d -d
0 c a c d b b d
-c 0 c a -d d b b
b b d -d a c 0 -c
d b b d c a c 0
-d d b b 0 c a c
-b -d d b -c 0 c a


=

L︷ ︸︸ ︷
In/2 0

︸ ︷︷ ︸
n/2 coeffs.

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

In/2

×



D0︷ ︸︸ ︷
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0

0

︸ ︷︷ ︸
D1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


× L∗

Step 3: Store non-trivial coeffs of L and recurse on D0,D1.

Complexity: O(n log n) in storage and computa on (always stay in FFT).



FFNearestPlane(T, t) – informal

1 If base field is Q, compute z← NearestPlane(I, Lleaf = T.value, t)
2 Else, split t in (t0, t1)

1 z1 ← FFNearestPlane(Trightchild, t1)
2 t̄0 ← t0 + (t1 − z1) · L [with L = T.value]
3 z0 ← FFNearestPlane(Tle child, t̄0)

Return z

Orthogonaliza on data can be
stored in a tree T:

 Compu ng T on-the-fly reduces
storage cost to O(n) [PFH+17,
GM18, OSHG19, Por19]

 By tweaking 2 , t and z can
share the same buffer (no t̄0)

L

L0

L00

. . . . . .

L01

. . . . . .

L1

L10

. . . . . .

L11

. . . . . .



Fast Fourier
Sampling



To make (fast Fourier) nearest plane secure, combine it with Gaussians:

+ =
c

Applica ons:
 Signatures (Falcon [PFH+17])
 (H)IBE (ETSI proposal LATTE)

 Ring signatures (Raptor [LAZ19])
 Group signatures [dLS18], etc.

Prac cal ques ons:
 How large should be the Gaussian?
 What about the floa ng-point precision?

We address both ques ons w/ a Rényi divergence analysis [BLL+15, Pre17].
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The Rényi Divergence
Defini on. For α ∈ (1,+∞), the Rényi divergence between two
distribu ons P ,Q is

Rα(P∥Q) =

 ∑
x∈Supp(P)

P(x)α

Q(x)α−1

 1
α−1

(6)

Mo va on. Consider a scheme doing q queries to a distribu on Di, note ϵi
the prob. of an event breaking the scheme and ϵIdeal = 2−λ.
 With the sta s cal distance:

ϵIdeal ≥ ϵReal − qΔSD(DReal,DIdeal) Take ΔSD ≤ 2−λ (7)

 With the Rényi divergence:

ϵIdeal ≥ ϵ
α

α−1
Real/Rα(DReal∥DIdeal)

q Take (α ≥ λ) & (Rα ≤ 1+ 1/q) (8)

Use when: Search problem + moderate number of queries (e.g. ≤ 264)



Picking the right σ

We combine FFNearestPlane with Gaussian rounding to (hopefully) obtain a
discre zed Gaussian of standard devia on σ.

σ too small The “right” σ

c

σ too big

c

1 σ too small⇒ vulnerable to learning a acks [NR06, DN12]
2 σ too large⇒ subop mal for cryptography



Standard devia on analysis

Θ(σ2)
Θ(σ2)

1
q · e

Θ(σ2)

σ

λ BKZ-Hardness
SD [GPV08]
KLD [DLP14]
RD [Pre17]

For the example of Falcon and q = 264, we gain about 30 bits of security
(compared to the SD).



Precision analysis
We note Ideal (resp. Real) the output of fast Fourier sampling with infinite
(resp. finite) precision.

Sta s cal distance analysis: If the (absolute) precision loss is |x− x̄| < δ:

ΔSD(Real, Ideal) = δ · poly(n, . . . ) (9)

This entails a bit precision of λ + polylog(n, . . . ), unacceptable in prac ce.

Rényi divergence analysis: Under the same condi ons:

Rα(Real∥Ideal) = 1+ α · δ2 · poly(n, . . . ) (10)

Combining that with:

Rα(Real∥Ideal)q · εIdeal ≥ εα/(α−1)Real (11)

gives a bit precision of (log2 λq)/2+ polylog(n, . . . ) for a security loss O(1).



Sta s cal distance Rényi divergence
Sec = f(std dev) λ = Θ(σ2) λ = 1

q · e
Θ(σ2)

Bit precision λ + polylog(...) log2 λq
2 + polylog(...)



Conclusion



Related works:
 Faster Gaussian Sampling for Trapdoor La ces with Arbitrary

Modulus [GM18]
 Applies similar ideas to the Micciancio-Peikert framework

 Algebraic and Euclidean La ces: Op mal La ce Reduc on and
Beyond [KEF19]

 Applies similar ideas to LLL over tower rings

Open ques ons:
1 Cryptanaly c applica ons beyond [KEF19]?
2 Ge ng rid of floa ng-point arithme c?

1 Micciancio-Peikert trapdoors?
2 Itera ng from [DGPY19]?

3 Masking?
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