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Lattices: From Theory to Practice



This talk: step @ of Sign

Keygen(1%)

@ Gen. matrices A, B s.t.
> BA=0
> B has small coefficients
® pk:=A sk:=B

Sign(msg, sk = B)
@ Compute c such that
cA = H(msg)
® v « vectorin £(B), close to ¢
© sig:=s=(c—v)
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Focus of this talk:

Given B and c, how do we efficiently (and securely) compute v € L(B) close to v?

Two parts:
Fast Fourier orthogonalization [DP16]
Purely algorithmic/algebraic
From FFO to fast Fourier sampling [Pre17, PFH"17]
Statistical arguments (Rényi divergence)



-ast Fourler
Orthogonalization



Gram-Schmidt orth. (GSO): LDL decomposition:

Given B ¢ R™™ full-rank, com-
pute:

B=LxB (1)

where:

-» Lis lower triangular with 1's
on its diagonal

- B has orthogonal rows
Can be done in time O(mn?)

Given G € C™" self-adjoint (i.e.
G* = G), compute:

G=LxDxL* 2)

where:

-» Lis lower triangular with 1's
on its diagonal

-> D is diagonal
Can be done in time O(n®)
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Fun fact 1: When G = B x B*, the GSO and LDL are equivalent.

Fun fact 2: The GSO and LDL generalize to rings/fields of the form Q[x| /()

with adequate definitions of adjoint/inner product.




How to compute efficiently a close vector:

RoundOff(B, c)

O t—c-B!
® Forje{n,..., 1}

NearestPlane(B, L, c)

O t—c-B?
® Forje{n,... 1}

(i/ Zj(- ’thJ \D ZJ'(— [tj+2i>j(t1—zi)LiJJ
©® Returnv:=z-B ©® Returnv:=2z-B
N8 I
o . ,,,,,,,,,,,,, .,,
,,,,,,,,,, j,.,,,,,,,,,,,,
e ,,,,,,S‘L ,,,,,,
—————— ® e - . T




It is common to take matrices/vectors with coefficients in R = Z4[x]/(¢),
where ¢ can be:

@ A convolution polynomial x" — 1
@ A cyclotomic polynomial, e.g. x” + 1 for n a power-of-two
© Another polynomial, e.g. x* —x — 1 as in NTRU Prime

The techniques we describe provide speed-ups for subsets of € and ©
(tower of rings), but not ©.

We focus on ¢ = x" + 1 with n = 2%, and note K, = Q[x]/(x" + 1).
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where ¢ can be:

A convolution polynomial x" — 1
A cyclotomic polynomial, e.g. x" + 1 for n a power-of-two
Another polynomial, e.g. x* — x — 1 asin NTRU Prime

The techniques we describe provide speed-ups for subsets of & and
(tower of rings), but not

We focus on ¢ = x" + 1 with n = 2%, and note K, = Q[x]/(x" + 1).

Our goal: provide a faster NearestPlane algorithm over towers of rings:
Compact representation of the orthogonalization
How to use this compact representation

Generalize to module lattices (with base ring a tower of rings).



If no obvious way to exploit the ring structure, one can map everything to Z
(or Q). For example, this ring endomorphism

T: K4 — K4
g(x) — (a+bx+cx®+dx®) - g(x)

can be interpreted as the endomorphism of Q* with this associated matrix
over the canonical basis {1, x,x?, x}:

1 x  x2 33
a b. c



Problem: the power basis is not adequate for GSO/LDL!

B L B
f a b C d ) 1 00O Ts 5 % %1
N b c |« 100 x % k%
-¢c —d a b Tl x o x 10 1 e % % «
g —c —d a * % x 1 x % %k

Consequence: not obvious that the ring structure provide a gain é(n):
in storage (storing L)
in computation (using L in NearestPlane())

Lets find a better representation!



Observation: Representing T in the basis {1,x2, x,x3} instead of {1, x, x?, x3}
gives:

a c | Gy, d
<c “a |-d b
7 ® @ ¢c ©
S —-d|-c a
More formally: If we write f € K, in the K, ,-basis {1, x}:
f(x) = fo0®) +x - f1(x°) (4)
with fo, f1 € K, 2, the transformation matrix of T: g € K, — f- g is:
fo f1
5
[X~f1 fo } ©)

Note: This change of basis is a ring morphism that is also an isometry!



Fun fact 3: Distinct morphisms allow various levels of granularity.
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Fun fact 3: Distinct morphisms allow various levels of granularity.

Ta b e @ 0d<cb] [a Ol|lec«<|bdld-b]
b a b c d 0 -d-c O ale e|d b|b d
c. b ab c d 0-d c.©|a O|b d|b <«d
NONONON NN N\ €« ¢|0 al|d b|d b
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So what's the point? We combine the facts 1 to 3:
GSO < LDL
We can generalize the GSO/LDL to rings like K,
K, 2 (K,)"" via an isomorphism that is also an isometry.



Suppose we have a nega-circulant Gram matrix.

Step 1: “break” the matrix
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Suppose we have a nega-circulant Gram matrix.

Step 1: “break” the matrix
Step 2: Orthogonalize over K, »

acO0-|bd-d-b L "
cacO|b b d-d h ¥ % % %
NN lny2 0 O\ Y
<0 cal-ddb b _::II X**** L
Zzg-jaco-(;:_**** l)2 * ok ok %
aa b b 0o ovve A\
——

sb-dd bl-c O c a n/2 coeffs. R
i i L o i

1

Step 3: Store non-trivial coeffs of L and recurse on Dg, D;.

Complexity: O(nlogn) in storage and computation (always stay in FFT).



FFNearestPlane(T, t) - informal

© Else, split tin (to, t;)
D) zq FFNearestPlane(T ightchild, t1)
@) tg«to+(ty —21)-L
(3) zy « FFNearestPlane(Tefichild, to)
Return z

© If base field is Q, compute z < NearestPlane(l, Lie,s = T.value, t)

[with L = T.value]

Orthogonalization data can be
storedinatree T:

-» Computing T on-the-fly reduces
storage cost to O(n) [PFH" 17,
GM18, OSHG19, Por19]

-> By tweaking (2), t and z can
share the same buffer (no t)
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To make (fast Fourier) nearest plane secure, combine it with Gaussians:

Applications:

-» Signatures (Falcon [PFH*17]) -» Ring signatures (Raptor [LAZ19])
-» (H)IBE (ETSI proposal LATTE) -» Group signatures [dLS18], etc.



To make (fast Fourier) nearest plane secure, combine it with Gaussians:

+ =
Applications:
-» Signatures (Falcon [PFHT17]) -» Ring signatures (Raptor [LAZ19])
-» (H)IBE (ETSI proposal LATTE) -» Group signatures [dLS18], etc.

Practical questions:
-» How large should be the Gaussian?
-» What about the floating-point precision?
We address both questions w/ a Rényi divergence analysis [BLL™ 15, Pre17].



The Rényi Divergence “MSHIELD

Definition. For a € (1, +0o0), the Rényi divergence between two
distributions P, Q is

1

Ra(P||Q) = ( Z Q)(())(ii) (6)

xeSupp(P)

Motivation. Consider a scheme doing q queries to a distribution D;, note ¢;
the prob. of an event breaking the scheme and €geq = 27

> With the statistical distance:

Take ASD S 27}\ (7)

€ldeal Z €Real — qASD(DReaIa Dldeal)

-» With the Rényi divergence:
€ideal = €;E/RO((ZDReaIHZ)Ideal)q Take (a > A) & (Ra < 1+ 1/Q) (8)

Use when: Search problem + moderate number of queries (e.g. < 2%%)



Picking the right o

We combine FFNearestPlane with Gaussian rounding to (hopefully) obtain a
discretized Gaussian of standard deviation o.

o too small The “right” o o too big

© o too small = vulnerable to learning attacks [NRO6, DN12]
@ o too large = suboptimal for cryptography



Standard deviation analysis ‘"SHIELD

A 1 o) — BKZ-Hardness

a € — SD [GPVO08]
KLD [DLP14]

—RD [Prel7]

o

For the example of Falcon and g = 2%*, we gain about 30 bits of security
(compared to the SD).



Precision analysis

We note Ideal (resp. Real) the output of fast Fourier sampling with infinite
(resp. finite) precision.
Statistical distance analysis: If the (absolute) precision loss is [x — X| < &:

Asp(Real, Ideal) = & - poly(n,...) (9)
This entails a bit precision of A + polylog(n, ... ), unacceptable in practice.
Rényi divergence analysis: Under the same conditions:

R«(Real||ldeal) = 1+ a - 8 - poly(n, .. .) (10)

Combining that with:

Ry(Real||ldeal) - gjgeq > o/l (11)

gives a bit precision of (log, Aq)/2 + polylog(n,...) for a security loss O(1).



\ Statistical distance Rényi divergence

Sec = f(std dev) A = 0O(0?) A= % . e9(0?)
Bit precision A + polylog(...) "’g%)‘q + polylog(...)



Conclusion



Related works:
-» Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary
Modulus [GM18]
> Applies similar ideas to the Micciancio-Peikert framework

-» Algebraic and Euclidean Lattices: Optimal Lattice Reduction and
Beyond [KEF19]

> Applies similar ideas to LLL over tower rings



Related works:
-» Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary
Modulus [GM18]
> Applies similar ideas to the Micciancio-Peikert framework

-» Algebraic and Euclidean Lattices: Optimal Lattice Reduction and
Beyond [KEF19]

> Applies similar ideas to LLL over tower rings

Open questions:

© Cryptanalytic applications beyond [KEF19]?
@ Getting rid of floating-point arithmetic?

(1) Micciancio-Peikert trapdoors?
(2) Iterating from [DGPY19]?

© Masking?
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