
1

Attacking and Protecting SLH-DSA
against Fault Injections

Thomas Prest (joint work with Adrian Thillard)

PQShield (Paris, FR)

Deployment of post-quantum cryptography (11/10/2024)

2

PQShield

Who are we?
● A (mainly) European start-up specialised

in post-quantum cryptography
○ Also present in Japan, USA, etc.
○ 70+ employees, with 20+ PhDs in

PQC/implementation/security
● We provide:

○ Libraries (SW/HW)
○ SCA countermeasures
○ Expertise in various PQC topics

Who am I?
● Thomas Prest, Head of Research

○ Research Team
○ Paris office (come say hi!)

3

NIST standardisation

Standards
published
- FIPS 203
- FIPS 204
- FIPS 205

Aug.
2024

Standards
announced
- ML-KEM
- ML-DSA
- SLH-DSA
- FN-DSA

July
2022

Round 3
15 candidates

July
2020

Round 2
26 candidates

Jan.
2019

Round 1
69 candidates

Dec.
2017

NIST Call for
proposals

Dec.
2016

4

Hash-based signatures?

Signature
scheme

One-time
signature

scheme

Hash
function

Principle: build a signature scheme
using generic properties of
cryptographic hash functions

Pros:
+ Compelling and elegant idea

(the hash function is a black box)
+ Strong security guarantees
+ Post-quantum

Cons:
- Can get complicated
- Large signature size
- Slow signing

What about fault tolerance?

5

Part I: Attacking SLH-DSA
with fault injections

6

Fault injection attacks (FIA)

Row HammerLasers & other EM waves

Temperature variationVoltage variation

7

FIA and digital signatures

Signature schemeMessage Regular
signature

Signature schemeMessage Faulty
signature

Main idea:
1. Fault the signing procedure

2. Exploit the output (for example to recover the signing key)

8

The simplest hash-based signature
Main idea is to use hash chains

s1 → H(s1) → H2(s1) → … → HN-1(s1) → HN(s1) = p1

s2 → H(s2) → H2(s2) → … → HN-1(s2) → HN(s2) = p2

 Signing key: sk = (s1, s2) two 256-bit values
 Verification key: pk = (p1, p2)
 Signature of m: sig = (sig1, sig2) = (Hm(s1), HN-m(s2))
 Verification: Check that (HN-m(sig1), Hm(sig2)) = (p1, p2)

Observation 1: pk is a convoluted hash commitment of sk, sig partially opens this commitment

Observation 2: From any valid signature, we can recover the public key

Observation 3: This is a one-time signature (OTS). Asking two or more signatures breaks the scheme

sk pk

9

Attacks on the simplest hash-based signature

s1 → H(s1) → H2(s1) → … → HN-1(s1) → HN(s1) = p1

s2 → H(s2) → H2(s2) → … → HN-1(s2) → HN(s2) = p2

Black box attack (two signatures):

1. Ask two signatures (for msg1 < msg2)
2. We can forge a signature for any msg1 < msg < msg2

This is not acceptable ⇒ see next slides for a remediation

Fault injection attack (random fault):

1. Ask for a signature of msg1 = 0 and fault the counter msg1 (→ msg2) when computing Hmsg1(s2)
2. We can forge a signature for any message 0 = msg1 < msg < msg2

sk pk

10

Merkle trees: from one-time to few-time

R = H(R1, R2)

R2 = H(OTS3, OTS4)R1 = H(OTS, OTS2)

OTS1 OTS2 OTS3 OTS4

Merkle trees: allows to sign N times using N OTS
● Signature: 1 signature = { 1 OTS signature } + { log N hashes (= the co-path of the OTS used) }

○ We can think of a signature as a certificate chain
● Limitation:

○ Keygen requires to compute the entire tree ⇒ O(N) hashes
○ Requires a stateful counter → bad for deployment, bad against FIA!

11

Goldreich trees: stateless few-time signatures

R2 = H(OTS3, OTS4)R1 = H(OTS1, OTS2)

OTS1 OTS2 OTS3 OTS4

R3 = H(OTS5, OTS6)

OTS6OTS5

Goldreich trees:
● Principle:

○ N Merkle trees, each of depth 1
○ Each OTS signs the root of the

Merkle tree below it
● Signature: 1 signature = { log N hashes } +

{ log N OTS signatures }
○ The “certificate chain” analogy still

holds
● Advantages:

○ Generating pk = R2 takes time O(1),
so scales for arbitrarily large N

○ Can be made stateless when n → ∞
● Fault attacks?

○ Fault the OTS
○ Fault the Merkle tree recomputation

12

SPHINCS+: Merkle + Goldreich + optimizations

… … … … … … … … … … … … … … … …

SPHINCS+: a huge Goldreich “hyper-tree”, with each Merkle tree having many levels
1. The specific OTS used in SPHINCS+ is WOTS+

2. The bottom-most OTS are actually few-time signatures (specifically FORS)
3. 3 security levels (128/192/256), 2 variants (short/fast). Stateless.

13

Fault injection on SPHINCS+ (Castelnovi et al, 2018)

………

OTS*

… … … …

Main idea: make a top-level OTS sign 2 ≠ values
1. Ask two signatures of msg

○ SPHINCS+ is deterministic → the
“signing path” is always the same

2. First signature: no fault
3. Second signature: fault the computation

of the second-level Merkle tree ⚡
4. OTS* signs two ≠ values → break the

unforgeability of OTS* for a subset P of
messages

How to exploit this: Tree grafting 🌲
1. Generate a partial signature (up to the

second-level Merkle tree M) for msg* until
the root of M is in P

a. Recall: a signature ≈ certificate chain
2. Sign M using the faulted OTS
3. We now have a forged signature

14

Fault injection on SPHINCS+ (Castelnovi et al, 2018)

………

… … … …

Main idea: make a top-level OTS sign 2 ≠ values
1. Ask two signatures of msg

○ SPHINCS+ is deterministic → the
“signing path” is always the same

2. First signature: no fault
3. Second signature: fault the computation

of the second-level Merkle tree
4. OTS* signs two ≠ values → break the

unforgeability of OTS* for a subset P of
messages

Bonus:
● One fault
● Low required precision
● Faulted signatures are valid

Extended & implemented in subsequent works

15

Part II: Protecting SLH-DSA
against fault injections

16

Countermeasures

Goal: prevent triggering twice the same WOTS+ instance on different messages

Issue: SLH-DSA is stateless, so we need to add some shenanigans in memory to ensure that

We discuss three countermeasures:

● Caching
● Redundancy
● Redundancy + dummies

17

Caching layers (Genêt CHES 2023)

… … … … … … … … … … … … … … … …

Inspired by Gravity-SPHINCS:

● Static: cache all WOTS+ in the top layers
○ c = # of layers that can be cached

depends on available memory
○ Exponential in c

● Dynamic: cache all WOTS+ operations
occurring during previous computations

18

… … … … … … … … … … … … … … … …

Caching layers (Genêt CHES 2023)

19

… … … … … … … … … … … … … … … …

Inspired by Gravity-SPHINCS:

● Static: cache all WOTS+ in the top layers
○ c = # of layers that can be cached

depends on available memory
○ Exponential in c

● Dynamic: cache all WOTS+ operations
occurring during previous computations

Caching layers (Genêt CHES 2023)

20

… … … … … … … … … … … … … … … …

Caching layers (Genêt CHES 2023)

Inspired by Gravity-SPHINCS:

● Static: cache all WOTS+ in the top layers
○ c = # of layers that can be cached

depends on available memory
○ Exponential in c

● Dynamic: cache all WOTS+ operations
occurring during previous computations

21

Caching layers (Genêt CHES 2023)

… … … … … … … … … … … … … … … …

22

Caching strategies are too costly

“Since the threat of a fault can never be completely eliminated, the current best solution
to protect the signature scheme against accidental and intentional faults is through
redundancy; an observation that is shared by others”

“In conclusion, the results of this paper urge all real-world deployments of SPHINCS+ to
come with redundancy checks, even if the use case is not prone to faults”

23

Best countermeasure yet: redundancy

Algorithm

Algorithm

Algorithm

Algorithm Secure up to r-1 faults.

(* Assuming secure
checks, sanitized inputs,
constants, etc.)

24

Attacker model

Attacker has a scope: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

25

Attacker model

Attacker has a scope: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

Comparisons are protected: the attacker needs to perturbate the SLH-DSA execution
=> must inject twice the same fault (consider no collision)

26

Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

{ Secure up to r-1 faults }
AND
{ Probably secure to > r-1 faults }

(* Assuming secure
checks, sanitized inputs,
constants, RNG…)

Redundancy + randomization

27

Execute operations in a random order

● For example: 16 S-boxes in AES ⇒ 16! possible
orders

In SLH-DSA, many operations can be performed in
parallel:

● at every level of the FORS (leaves)
● at every level of the hypertree
● at every step of a WOTS chain
● (optimizations possible)

For example, bottom layer of FORS ⇒ (12*2^14)!
possible orders

Randomization

28

Execute operations in a random order

● For example: 16 S-boxes in AES ⇒ 16! possible
orders

In SLH-DSA, many operations can be performed in
parallel:

● at every level of the FORS (leaves)
● at every level of the hypertree
● at every step of a WOTS chain
● (optimizations possible)

For example: bottom layer of FORS ⇒ (12*2^14)!
possible orders

Randomization

… … … … … … … … … … … … … … … …

29

Execute operations in a random order

● For example: 16 S-boxes in AES ⇒ 16! possible
orders

In SLH-DSA, many operations can be performed in
parallel:

● at every level of the FORS (leaves)
● at every level of the hypertree
● at every step of a WOTS chain
● (optimizations possible)

For example, bottom layer of FORS ⇒ (12*2^14)!
possible orders

Randomization

30

Execute operations in a random order

● For example: 16 S-boxes in AES ⇒ 16! possible
orders

In SLH-DSA, many operations can be performed in
parallel:

● at every level of the FORS (leaves)
● at every level of the hypertree
● at every step of a WOTS chain
● (optimizations possible)

For example, bottom layer of FORS ⇒ (12*2^14)!
possible orders

Randomization

… … … … … … … … … … … … … … … …

31

Climbing in each subtree lowers the number of
possible orders, up to the root, where no
randomness can occur.

Depending on the constraints:

● Add dummy operations
⇒ artificially raise entropy and decreases
success probability

● Locally duplicate the operation
⇒ perfect security but need to be
carefully made (eg duplicate inputs)

… … … … … … … … … … … … … … … …

Decaying entropy

32

128s r=1 r=2 r=3 r=4 r=5

PRF 1.00e+00 5.47e-06 2.99e-11 1.64e-16 8.96e-22

F-FORS 1.00e+00 1.74e-05 3.04e-10 5.30e-15 9.25e-20

F-i 1.00e+00 7.97e-06 6.36e-11 5.07e-16 4.04e-21

Tlen 8.57e-01 2.39e-04 6.67e-08 1.86e-11 5.19e-15

H0 9.52e-01 4.54e-02 2.16e-03 1.03e-04 4.90e-06

Hmax 1.00e+00 6.98e-05 4.87e-09 3.39e-13 2.37e-17

Attack success probability (no dummies)

33

Asymptotic security (dummies on most
sensitive pool)

34

Ran simulations on open source “sloth” implementation by Markku (https://github.com/slh-dsa/sloth),
slightly modified to get:

● { Compiled in -O0 } & { r executions and final comparisons }
● { Compiled in -O0 } & { r executions and final comparisons w/ randomization of F leaves }

Implementation allows for easy and immediate randomization of 14*12 operations (modifying a bit more
would allow for much better, but time constraints…)

gdb scripting to stuck at 0 the same register at the exact same time:

● Redundancy ⇒ 100% success rate
● Redundancy + randomization:

○ r = 2 ⇒ 55 successes on 10k (p=0.0055, expected 0.0059)
○ r = 3 ⇒ 2 successes on 200k (p=0.00001, expected 0.0000354)

Quick PoC

https://github.com/slh-dsa/sloth

35

Fault injection attacks

● SLH-DSA is particularly vulnerable to fault injection attacks
○ Easy to mount
○ Easy to exploit
○ Not detectable by default

Countermeasures

● Caching ⇒ seems too expensive
● Pure redundancy ⇒ works but expensive
● Redundancy + dummies + shuffling ⇒ tolerates faults beyond the redundancy threshold

Conclusion

36

Questions?

