.- 72 SHIELD

Attacking and Protecting SLH-DSA
against Fault Injections

Thomas Prest (joint work with Adrian Thillard)

POShield (Paris, FR)

#

2
'3
¥
7

Depl;@yment of post-quantum cryptography (11/10/2024)

......
} Rk
........

PQShield

Who are we?
e A (mainly) European start-up specialised
in post-quantum cryptography
o Also present in Japan, USA, etc.
o 70+ employees, with 20+ PhDs in
PQC/implementation/security

e We provide:
o Libraries (SW/HW)
o SCA countermeasures
o Expertise in various PQC topics

Who am |I?
e Thomas Prest, Head of Research
o Research Team
o Paris office (come say hil!)

- "2 SHIELD

. . NIST standardisation

Dec. July July
2016 201 7 201 9 2020 2022

NIST Call for Round 1 Round 2 Round 3 Standards
proposals 69 candidates 26 candidates 15 candidates announced
- ML-KEM
- ML-DSA
- SLH-DSA

- FN-DSA

- "2 SHIELD

Standards
published
- FIPS 203
- FIPS 204
- FIPS 205

Hash-based sighatures?

Principle: build a signature scheme
using generic properties of
cryptographic hash functions

Pros:
Compelling and elegant idea
(the hash function is a black box)
Strong security guarantees
Post-quantum

Cons:
Can get complicated
Large signature size
Slow signing

One-time
signature @
scheme

- "2 SHIELD

Hash
function

Signature
scheme

jections

l“.
..
s

.
o
ot o
oo,

O,
v e .8

Fault injection attacks (FIA)

Lasers & other EM waves

Voltage variation

AGGRESOR ROW ——

VICTIMROW —— ()

AGGRESOR ROW

BIT-FLIP

ROWHAMMER ATTACK PRINCIPLE

fl)
O
16
2
(E}
O
¢

[&

- "2 SHIELD

ROW
BUFFER

FIA and digital signatures - "2 SHIELD

(. w Regular
Message L Signature scheme J signature
Message (Signature scheme w Faulty
& L & J signature
Main idea:

1. Fault the signing procedure
2. Exploit the output (for example to recover the signing key)

The simplest hash-based signhature - F*SHIELD

Main idea is to use hash chains

sk pk
s1 — H(s1) — H2(s1) — . — HN-1(s1) — HN(s1) = p1
s2 | - H(s2) — H3%(s2) — . — HY%(s2) — |HN(s2)=p2
Signing key: sk = (s1, s2) two 256-bit values
Verification key: pk = (p1, p2)
Signature of m: sig = (sigl, sig2) = (H™(s1), HN"™(s2))
Verification: Check that (HN™(sig1), HM(sig2)) = (p1, p2)

Observation 1: pkis a convoluted hash commitment of sk, sig partially opens this commitment

Observation 2: From any valid signature, we can recover the public key

This is a one-time signature (OTS). Asking two or more signatures breaks the scheme

Attacks on the simplest hash-based sighature :‘.gHELD

sk pk
1 |
sl | — H(sl) — H3(s1) — w — HYs1) — [HY(s1) =p1
s2 | > H(s2) — H3(s2) — w — HV%(s2) — |HN(s2)=p2
1

Black box attack (two signatures):

1. Ask two signatures (for msgi <)
2. We can forge a signature for any msgl < msg <

This is not acceptable = see next slides for a remediation

Fault injection attack (random fault):

1. Ask for a signature of msgl = 0 and fault the counter msg1 (—) when computing HM€!(s2)
2. We can forge a signature for any message O = msgl < msg <

. . Merkle trees: from one-time to few-time : *°SHIELD

4 m N

R1=H(OTS, 0TS2) R2 = H(OTS3, 0TS4)

.Y X YT)

Merkle trees: allows to sign N times using N OTS
e Signature:1signature = {10TS signature } + { log N hashes (= the co-path of the OTS used) }
o We can think of a signature as a certificate chain
e Limitation:
o Keygen requires to compute the entire tree = O(N) hashes
o Requires a stateful counter — bad for deployment, bad against FIA!

Goldreich trees:
e Principle:
o N Merkle trees, each of depth 1
o Each OTS signs the root of the
Merkle tree below it
e Signature:1signature = { log N hashes } +
{log N OTS signatures }
o The “certificate chain” analogy still
holds
e Advantages:
o Generating pk = R2 takes time 0(1),
so scales for arbitrarily large N
o Can be made stateless when n —
e Fault attacks?
o Fault the OTS
o Fault the Merkle tree recomputation

. Goldreich trees: stateless few-time signatures

- "2 SHIELD

R3 = H(OTS5, 0TS6)

SPHINCS+: Merkle + Goldreich + optimizations ::*SHIELD

CE—

G S—
** **

%&&&&&%&

SPHINCS+: a huge Goldreich “hyper-tree”, with each Merkle tree having many levels
1. The specific OTS used in SPHINCS+ is WOTS+
2. The bottom-most OTS are actually few-time signatures (specifically FORS)
3. 3 security levels (128/192/256), 2 variants (short/fast). Stateless.

Fault injection on SPHINCS+ (Castelnovi et al, 2018) ::reSHIELD

Main idea: make a top-level OTS sign 2 = values

1. Ask two signatures of msg
0 SPHINCS+ is deterministic — the —
“signing path” is always the same * *
2. First signature: no fault
3. Second signature: fault the computation ¢ * * *
of the second-level Merkle tree
4. OTS* signs two z values — break the

[
1
unforgeability of OTS* for a subset P of Y YRR
messages

How to exploit this: Tree grafting #

1. Generate a partial signature (up to the
second-level Merkle tree M) for msg* until
the rootof Misin P v vV VvV V¥

a. Recall: a signature = certificate chain
2. Sign M using the faulted OTS
3. We now have a forged signature 13

o T o mm o e -

Fault injection on SPHINCS+ (Castelnovi et al, 2018) ::reSHIELD

Main idea: make a top-level OTS sign 2 = values
1. Ask two signatures of msg
o SPHINCS+ is deterministic — the
“signing path” is always the same
2. First signature: no fault
3. Second signature: fault the computation
of the second-level Merkle tree
4. OTS* signs two z values — break the
unforgeability of OTS* for a subset P of ’
messages

Bonus:
e One fault
e Low required precision
e Faulted signatures are valid

o T o mm o e -

Extended & implemented in subsequent works

.
g

)
.tP
X %

)

&

e B *
. -~
Rl oL

Countermeasures - "o SHIELD

Goal: prevent triggering twice the same WOTS+ instance on different messages

Issue: SLH-DSA is stateless, so we need to add some shenanigans in memory to ensure that

We discuss three countermeasures:

e Caching
e Redundancy
e Redundancy+dummies

. . Caching layers (Genét CHES 2023) ' FeSHIELD

Inspired by Gravity-SPHINCS: |

e Static: cache all WOTS+ in the top layers
o ¢ = # of layers that can be cached

depends on available memory - / \ <

o Exponentialinc "4 A
e Dynamic: cache all WOTS+ operations
occurring during previous computations

17

. . Caching layers (Genét CHES 2023) ' FeSHIELD

Table 9: Analysis of the layer caching countermeasure for all SPHINCS™ parameter sets. -

P(Expl.)
c= 1 2 3 4 ... d-1 d
128s 0.8972 0.8591 0.8179 0.7733 ... 0.6141 0.0000
128f 0.9505 0.9335 0.9158 0.8975 ... 0.5076 0.0000
192s 0.9287 0.9034 0.8767 0.8486 ... 0.7539 0.0000
192f 0.9420 0.9218 0.9007 0.8787 ... 0.2625 0.0000

2565 0.8711 0.8216 0.7670 0.7066 ... 0.4784 0.0000 - / 3 S

256f 0.9327 0.9090 0.8840 0.8578 ... 0.3864 0.0000 V- SA
Table 10: Analysis of the layer caching countermeasure for all SPHINCS™ parameter sets.
Memory (bytes)
c= 1 2 3 4 e d

128s 143 x 10° 3.68 x 107 9.43 x 10° 2.41x10'% ... 1.04x10%2
128f 448 x 10° 4.03 x 10* 3.27 x 10° 2.62x 10° ... 7.38x10% ‘b b b ‘
192s 3.13x10° 8.05x 107 2.06x10" 5.28x10" ... 2.27x10*)
\ V' VvV v v VvV vV VV VY

: . 1 1
192f 9.79 x 10° 8.81x 10* 7.15x10° 573 x 10° ... 1.03x 1078 vV V
2565 549 x 10° 1.41x 10% 3.61x10'0 9.24x10'2 ... 3.97x10?
2561 343 x10* 5.83x 10° 9.36 x 106 1.50 x 108 ... 6.75x10%

18

. . Caching layers (Genét CHES 2023) ' FeSHIELD

Inspired by Gravity-SPHINCS: |

e Static: cache all WOTS+ in the top layers
o ¢ = # of layers that can be cached

depends on available memory - / \ ~
o Exponentialinc
e Dynamic: cache all WOTS+ operations
occurring during previous computations

. . Caching layers (Genét CHES 2023) ' FeSHIELD

Inspired by Gravity-SPHINCS: |

e Static: cache all WOTS+ in the top layers
o ¢ = # of layers that can be cached

depends on available memory - / \ ~

o Exponentialinc "4 4 e
e Dynamic: cache all WOTS+ operations
occurring during previous computations

o o o

. . Caching layers (Genét CHES 2023) ' FeSHIELD

Table 11: Analysis of the branch caching countermeasure for all SPHINCS* parameter
sets. The numbers b are rounded up to the next integer.
P(Expl.)
b= (2/3)2" (2/3)22" (2/3)2°" (2/3)2'" ... (2/3)2

128s 0.9292 09238 09174 09098 ... 0.3172

128f 0.9647 0.9634 0.9620 0.9605 ... 0.3219

192s 0.9511 0.9485 0.9457 0.9425 ... 0.3249

192f 0.9585 0.9568 0.9549 0.9528 ... 0.3052 P ~

256s 0.9111 0.9023 0.8917 0.8785 ... 0.3068 P / \ S

256f 0.9530 0.9507 0.9481 0.9453 T 0.3130 g P SA
Table 13: Analysis of the branch caching countermeasure for all SPHINCS™ parameter
sets. The numbers b are rounded up to the next integer.
Memory (bytes)

b= (2/3)2% (2/3)22" (2/3)2%% (2/3)2* ... (2/3)2%
128s 8.14x10° 1.82x10% 4.00 x 10'° 853 x 10'2 ... 7.36 x 10*
1 1 1
v v \ v

128f 7.14 x 10* 491 x10° 3.71 x 106 2.80 x 107 ... 5.55 x 10%° 1 | | | | | | 1 1 1
1925 174 x 10° 3.90 x 10° 856 x 101° 1.83x 1013 ... 1.58 x 102 V' vy V vV vV V¥ V' Yy VvV V
192f 1.68 x 10° 1.16 x 10 8.81 x 10° 6.69 x 107 ... 7.62 x 10?2
2565 3.02x 106 6.77 x 108 1.49 x 101! 3.17x 1013 ... 2.74 x 1022
256f 4.13x10° 6.08 x 106 9.12 x 107 1.36 x 10° ... 4.79 x 1023

Caching strategies are too costly - A SHIELD

“Since the threat of a fault can , the current best solution
to protect the signature scheme against accidental and intentional faults is through
; an observation that is shared by others”

“In conclusion, the results of this paper urge all real-world deployments of SPHINCS+ to
come with checks, even if the use case is not prone to faults”

22

Best countermeasure yet: redundancy

:\[—> Algorithm

:\[—> Algorithm

:\[—> Algorithm

:\[—> Algorithm

- "2 SHIELD

(* Assuming secure

— Sl checks, sanitized inputs,
constants, etc.)
o SZ\
S (S1=52=53="---=5,)"

Secure up to r-1 faults.

23

- "2 SHIELD

Attacker model

: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

F H PRF Tyen
Key Generation oh/dylen ok/d _ 1 2h/d1 en oh/d
Signing kt +d(2"4)wlen k(t—1)+d@2"4-1) kt+d(@2"?)1en d2M4

Verification k + dwlen klogt+ h - d

24

- "2 SHIELD

Attacker model

: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

: the attacker needs to perturbate the SLH-DSA execution
=> must inject twice the same fault (consider no collision)

25

Redundancy + randomization

Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

— 52\

- "2 SHIELD

(* Assuming secure
checks, sanitized inputs,
constants,)

g (S=8=8= =)

.S

{ Secure up to r-1 faults }
AND
{ secure to > r-1 faults }

26

Randomization

Execute operations in a random order

e Forexample: 16 S-boxes in AES = 16! possible
orders

In SLH-DSA, many operations can be performed in
parallel:

at every level of the FORS (leaves)
at every level of the hypertree

at every step of a WOTS chain
(optimizations possible)

For example, bottom layer of FORS = (12*2414)!
possible orders

50 O

0 O O O

10

150

- "2 SHIELD

15 o

1 O

27

e o

. . Randomization - "aGHIELD

Execute operations in a random order

e Forexample: 16 S-boxes in AES = 16! possible

In SLH-DSA, many operations can be performed in P 7 . S
parallel: -7 pl \q s
e atevery level of the FORS (leaves)
e atevery level of the hypertree
e ateverystep of a WOTS chain
e (optimizations possible)

For example: bottom layer of FORS = (12*2A14)!
possible orders

Randomization - "aGHIELD

Execute operations in a random order

e Forexample: 16 S-boxes in AES = 16! possible
orders

In SLH-DSA, many operations can be performed in

parallel: ::(~ H(s1) ~ H(s1) - w - HY(s1) - HN(S:))k:p‘I
e atevery level of the FORS (leaves) ad D L B B s
e ateverylevel of the hypertree
e ateverystep of a WOTS chain
e (optimizations possible)

For example, bottom layer of FORS = (12*2414)!
possible orders

29

. . Randomization - SHIELD
Execute operations in a random order

e Forexample: 16 S-boxes in AES = 16! possible |
orders

In SLH-DSA, many operations can be performed in
parallel: _-

e atevery level of the FORS (leaves)
e ateverylevel of the hypertree

e ateverystep of a WOTS chain

e (optimizations possible)

ﬁ C X I I I
vV v VVVVVV VY

For example, bottom layer of FORS = (12*2414)!
possible orders

30

. . Decaying entropy . FoSHIELD

Climbing in each subtree lowers the number of
possible orders, up to the root, where no
randomness can occur.

Depending on the constraints:

e Add dummy operations
= artificially raise entropy and decreases
success probability

e Locally duplicate the operation
= perfect security but need to be

carefully made (eg duplicate inputs) fﬁ Sy

Attack success probability (no dummies) - F2SHIELD
128s r=1 r=2 r=3 r=4 r=5

PRF 1.00e+00 5.47e-06 2.99e-11 1.64e-16 8.96e-22
F-FORS 1.00e+00 174e-05 3.04e-10 530e-15 9.25e-20

F-i 1.00e+00 7.97e-06 6.36e-11 5.07e-16 4.04e-21

Tlen 8.57e-01 239e-04 6.67e-08 1.86e-1I 5.19e-15

HO 9.52e-01 4.54e-02 2.16e-03 1.03e-04 4.90e-06

Hmax 1.00e+00 6.98e-05 4.87e-09 3.39e-13 2.37e-17

32

. Asymptotic security (dummies on most - *SHIELD
sensitive pool)

10-—1 i

10—3 4

10—5 .

10—7]

1079 1

10—11 .

attack success probability

10—13 4

10-15 .

0 200 400 600 800 1000 1200 1400
kilobytes overhead

33

Quick PoC - A SHIELD

Ran simulations on open source “sloth” implementation by Markku ()
slightly modified to get:

e {Compiledin-00} & {rexecutions and final comparisons }
e {Compiledin-00} & {rexecutions and final comparisons w/ randomization of F leaves }

Implementation allows for easy and immediate randomization of 14*12 operations (modifying a bit more
would allow for much better, but time constraints...)

to stuck at O the same register at the exact same time:

e Redundancy = 100% success rate
e Redundancy+ randomization:
o r=2 = 55successeson 10k (p=0.0055, expected 0.0059)
o r=3 = 2successes on 200k (p=0.00001, expected 0.0000354)

34

https://github.com/slh-dsa/sloth

Conclusion - "o GHIELD

Fault injection attacks

e SLH-DSA s particularly vulnerable to fault injection attacks
o Easyto mount
o Easy to exploit
o Not detectable by default

Countermeasures
e Caching = seems too expensive
e Pure redundancy = works but expensive

e Redundancy+ dummies + shuffling = tolerates faults beyond the redundancy threshold

35

T TN Ll LR
P TR M ST

?

IONS

