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PQShield

Who are we?
● A (mainly) European start-up specialised 

in post-quantum cryptography
○ Also present in Japan, USA, etc.
○ 70+ employees, with 20+ PhDs in 

PQC/implementation/security
● We provide:

○ Libraries (SW/HW)
○ SCA countermeasures
○ Expertise in various PQC topics

Who am I?
● Thomas Prest, Head of Research

○ Research Team
○ Paris office (come say hi!)
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NIST standardisation

  

Standards 
published
- FIPS 203
- FIPS 204
- FIPS 205

Aug. 
2024

  

Standards 
announced
- ML-KEM
- ML-DSA
- SLH-DSA
- FN-DSA

July 
2022

  

Round 3
15 candidates

July 
2020

  

Round 2
26 candidates

Jan. 
2019

  

Round 1
69 candidates

Dec. 
2017

    

NIST Call for 
proposals

Dec. 
2016
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Hash-based signatures?

Signature 
scheme

One-time 
signature 

scheme

Hash 
function

Principle: build a signature scheme 
using generic properties of 
cryptographic hash functions

Pros:
+ Compelling and elegant idea

(the hash function is a black box)
+ Strong security guarantees
+ Post-quantum

Cons:
- Can get complicated
- Large signature size
- Slow signing

What about fault tolerance?
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Part I: Attacking SLH-DSA
with fault injections
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Fault injection attacks (FIA) 

Row HammerLasers & other EM waves

Temperature variationVoltage variation
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FIA and digital signatures

Signature schemeMessage Regular 
signature

Signature schemeMessage Faulty 
signature

Main idea:
1. Fault the signing procedure

2. Exploit the output (for example to recover the signing key)
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The simplest hash-based signature
Main idea is to use hash chains

s1 → H(s1) → H2(s1) → … → HN-1(s1) → HN(s1)  = p1

s2 → H(s2) → H2(s2) → … → HN-1(s2) → HN(s2) = p2

  Signing key: sk = (s1, s2) two 256-bit values
  Verification key: pk = (p1, p2)
  Signature of m: sig = (sig1, sig2) = (Hm(s1), HN-m(s2))
  Verification: Check that (HN-m(sig1), Hm(sig2)) = (p1, p2)

Observation 1: pk is a convoluted hash commitment of sk, sig partially opens this commitment

Observation 2: From any valid signature, we can recover the public key

Observation 3: This is a one-time signature (OTS). Asking two or more signatures breaks the scheme

sk pk



9

Attacks on the simplest hash-based signature

s1 → H(s1) → H2(s1) → … → HN-1(s1) → HN(s1)  = p1

s2 → H(s2) → H2(s2) → … → HN-1(s2) → HN(s2) = p2

Black box attack (two signatures):

1. Ask two signatures (for msg1 < msg2)
2. We can forge a signature for any msg1 < msg < msg2

This is not acceptable ⇒ see next slides for a remediation

Fault injection attack (random fault):

1. Ask for a signature of msg1 = 0 and fault the counter msg1 (→ msg2) when computing Hmsg1(s2)
2. We can forge a signature for any message 0 = msg1 < msg < msg2

sk pk
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Merkle trees: from one-time to few-time

R = H(R1, R2)

R2 = H(OTS3, OTS4)R1 = H(OTS, OTS2)

OTS1 OTS2 OTS3 OTS4

Merkle trees: allows to sign N times using N OTS
● Signature: 1 signature = { 1 OTS signature } + { log N hashes (= the co-path of the OTS used) }

○ We can think of a signature as a certificate chain
● Limitation:

○ Keygen requires to compute the entire tree ⇒ O(N) hashes
○ Requires a stateful counter → bad for deployment, bad against FIA!



11

Goldreich trees: stateless few-time signatures

R2 = H(OTS3, OTS4)R1 = H(OTS1, OTS2)

OTS1 OTS2 OTS3 OTS4

R3 = H(OTS5, OTS6)

OTS6OTS5

Goldreich trees:
● Principle:

○ N Merkle trees, each of depth 1
○ Each OTS signs the root of the 

Merkle tree below it
● Signature: 1 signature = { log N hashes } + 

{ log N OTS signatures }
○ The “certificate chain” analogy still 

holds
● Advantages:

○ Generating pk = R2 takes time O(1), 
so scales for arbitrarily large N

○ Can be made stateless when n → ∞
● Fault attacks?

○ Fault the OTS
○ Fault the Merkle tree recomputation
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SPHINCS+: Merkle + Goldreich + optimizations

… … … … … … … … … … … … … … … …

SPHINCS+: a huge Goldreich “hyper-tree”, with each Merkle tree having many levels
1. The specific OTS used in SPHINCS+ is WOTS+ 

2. The bottom-most OTS are actually few-time signatures (specifically FORS)
3. 3 security levels (128/192/256), 2 variants (short/fast). Stateless.
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Fault injection on SPHINCS+ (Castelnovi et al, 2018)

………

OTS*

… … … …

Main idea: make a top-level OTS sign 2 ≠ values
1. Ask two signatures of msg

○ SPHINCS+ is deterministic → the 
“signing path” is always the same

2. First signature: no fault
3. Second signature: fault the computation

of the second-level Merkle tree ⚡
4. OTS* signs two ≠ values → break the 

unforgeability of OTS* for a subset P of 
messages

How to exploit this: Tree grafting 🌲
1. Generate a partial signature (up to the 

second-level Merkle tree M) for msg* until 
the root of M is in P

a. Recall: a signature ≈ certificate chain
2. Sign M using the faulted OTS
3. We now have a forged signature
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Fault injection on SPHINCS+ (Castelnovi et al, 2018)

………

… … … …

Main idea: make a top-level OTS sign 2 ≠ values
1. Ask two signatures of msg

○ SPHINCS+ is deterministic → the 
“signing path” is always the same

2. First signature: no fault
3. Second signature: fault the computation

of the second-level Merkle tree
4. OTS* signs two ≠ values → break the 

unforgeability of OTS* for a subset P of 
messages

Bonus:
● One fault
● Low required precision
● Faulted signatures are valid

Extended & implemented in subsequent works
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Part II: Protecting SLH-DSA
against fault injections
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Countermeasures

Goal: prevent triggering twice the same WOTS+ instance on different messages

Issue: SLH-DSA is stateless, so we need to add some shenanigans in memory to ensure that

We discuss three countermeasures:

● Caching
● Redundancy
● Redundancy + dummies
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Caching layers (Genêt CHES 2023)

… … … … … … … … … … … … … … … …

Inspired by Gravity-SPHINCS: 

● Static: cache all WOTS+ in the top layers
○ c = # of layers that can be cached 

depends on available memory
○ Exponential in c

● Dynamic: cache all WOTS+ operations 
occurring during previous computations
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… … … … … … … … … … … … … … … …

Caching layers (Genêt CHES 2023)
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Caching layers (Genêt CHES 2023)

… … … … … … … … … … … … … … … …
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Caching strategies are too costly

“Since the threat of a fault can never be completely eliminated, the current best solution 
to protect the signature scheme against accidental and intentional faults is through 
redundancy; an observation that is shared by others”

“In conclusion, the results of this paper urge all real-world deployments of SPHINCS+ to 
come with redundancy checks, even if the use case is not prone to faults”
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Best countermeasure yet: redundancy

Algorithm

Algorithm

Algorithm

Algorithm Secure up to r-1 faults.

(* Assuming secure 
checks, sanitized inputs, 
constants, etc.)
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Attacker model

Attacker has a scope: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words
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Attacker model

Attacker has a scope: they can recognize patterns on operations, but not their operands
=> can distinguish the operations based on the nb of input words

Comparisons are protected: the attacker needs to perturbate the SLH-DSA execution
=> must inject twice the same fault (consider no collision)
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Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

Randomized
Algorithm

{ Secure up to r-1 faults }
AND
{ Probably secure to > r-1 faults }

(* Assuming secure 
checks, sanitized inputs, 
constants, RNG…)

Redundancy + randomization
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Execute operations in a random order

● For example: 16 S-boxes in AES ⇒ 16! possible 
orders

In SLH-DSA, many operations can be performed in 
parallel:

● at every level of the FORS (leaves)
● at every level of the hypertree
● at every step of a WOTS chain
● (optimizations possible)

For example, bottom layer of FORS ⇒ (12*2^14)! 
possible orders

Randomization
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Climbing in each subtree lowers the number of 
possible orders, up to the root, where no 
randomness can occur.

Depending on the constraints:

● Add dummy operations
⇒ artificially raise entropy and decreases 
success probability

● Locally duplicate the operation
⇒ perfect security but need to be 
carefully made (eg duplicate inputs)

… … … … … … … … … … … … … … … …

Decaying entropy
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128s r=1            r=2 r=3 r=4 r=5

PRF 1.00e+00 5.47e-06 2.99e-11 1.64e-16 8.96e-22 

F-FORS 1.00e+00 1.74e-05 3.04e-10 5.30e-15 9.25e-20

F-i 1.00e+00 7.97e-06 6.36e-11 5.07e-16 4.04e-21

Tlen 8.57e-01 2.39e-04 6.67e-08 1.86e-11 5.19e-15 

H0 9.52e-01 4.54e-02 2.16e-03 1.03e-04 4.90e-06

Hmax 1.00e+00 6.98e-05 4.87e-09 3.39e-13 2.37e-17 

Attack success probability (no dummies)



33

Asymptotic security (dummies on most 
sensitive pool)
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Ran simulations on open source “sloth” implementation by Markku (https://github.com/slh-dsa/sloth), 
slightly modified to get:

● { Compiled in -O0 } & { r executions and final comparisons }
● { Compiled in -O0 } & { r executions and final comparisons w/ randomization of F leaves }

Implementation allows for easy and immediate randomization of 14*12 operations (modifying a bit more 
would allow for much better, but time constraints…)

gdb scripting to stuck at 0 the same register at the exact same time:

● Redundancy ⇒ 100% success rate
● Redundancy + randomization:

○ r = 2 ⇒ 55 successes on 10k (p=0.0055, expected 0.0059)
○ r = 3 ⇒ 2 successes on 200k (p=0.00001, expected 0.0000354)

Quick PoC

https://github.com/slh-dsa/sloth
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Fault injection attacks

● SLH-DSA is particularly vulnerable to fault injection attacks
○ Easy to mount
○ Easy to exploit
○ Not detectable by default

Countermeasures

● Caching ⇒ seems too expensive
● Pure redundancy ⇒ works but expensive
● Redundancy + dummies + shuffling ⇒ tolerates faults beyond the redundancy threshold

Conclusion
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Questions?


