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Technical
Overview



A bird’s eye view

Keygen(1λ)

1 Gen. matrices A,B s.t.:
A is pseudorandom
B · A = 0
B has small coefficients

2 pk := A, sk := B

Sign(msg, sk = B)

1 Compute c such that c · A = H(msg)
2 v← vector in L(B), close to c
3 sig := s = (c− v)

Verify(msg, pk = A, sig = s)

Check (s short) & (s · A = H(msg))

c

v

s

Details omitted: salt the hash as H(salt∥msg), restart if s not short enough, etc.



Final tweaks (tentative)

Updated encoding for signatures
Reduce signature sizes by about 20 bytes for Falcon‐512

BUFF transform [CDF+21]
Instead of h = H(salt∥msg), compute h = H(H(pk)∥salt∥msg) and include h in sig
Provides additional security properties

Add the condition ∥s∥∞ ≤ B∞, with B∞ ≈ 840 (suggested by Yang Yu)
Forgery remains at least as hard

Make the signing restart rate very small
Desirable for applications where worst‐case running time matters.

Negligible impact on performance.



When to Deploy



Pros and cons

Pros
Compact public key and signature sizes
Very fast verification
Signing is also fast, but less than Dilithium

Cons
Key generation and signing require floating‐point arithmetic (FPA)

Be mindful on devices with non‐existent or variable‐time floating‐point units
Say goodbye to masking

Key generation and signing are complex to implement
Key generation is slow‐ish



Mapping criteria to applications
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Vehicle-to-vehicle (V2V) communications
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Drive (Quantum) Safe! – Towards
Post‐Quantum Security for V2V
Communications [BMTR22]

“ Only signature schemes whose ex‐
plicit certificate can be sent in five
or less fragments can be used in the
True Hybrid design. [...] Falcon is the
only viable scheme. ”



TLS certificates
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Post‐Quantum Authentication in TLS 1.3: A
Performance Study [SKD20]

“ The PQ algorithms with the best
performance for time‐sensitive ap‐
plications are Dilithium and Falcon. ”

NIST’s pleasant post‐quantum surprise
[Wes22] recommends:

Falcon for offline signature
Dilithium for handshake



Verification on embedded devices
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FPGA Energy Consumption of
Post‐Quantum Cryptography [BKG22]

“ For signature verification, Falcon
provides the lowest energy con‐
sumption, highest throughput, and
lowest transmission size [compared
to Dilithium and SPHINCS+]. ”

Verifying Post‐Quantum Signatures in 8 kB
of RAM [GHK+21]

“ On Cortex‐M3, [Falcon’s] overall
memory footprint is about 6.5 kB. ”



DNSSEC

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSEC

TLS

Embedded verif.

Retrofitting Post‐Quantum Cryptography in
Internet Protocols:
A Case Study of DNSSEC [MdJvH+20]

“ [...] the performance of Falcon‐
512 is closest to the current algo‐
rithms and meets the requirements
of DNSSEC. ”

Post‐Quantum Signatures in DNSSEC via
Request‐Based Fragmentation [GS22]

“ [...] Falcon‐512 may be the most
suitable option currently available to
be standardized for DNSSEC. ”



Summary
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Suitable applications:
V2V
TLS certificates
Verification on embedded devices
DNSSEC
...



What’s next?



Specification
NIST draft standard: 2023‐2024?
IETF draft?

Design evolution
SOLMAE [KTW+22] [Korean PQC submission]

“ [SOLMAE] uses the same simple, fast, parallelizable signing algo‐
rithm as Mitaka [...]. However, by leveraging a novel key generation
algorithm [...], SOLMAE achieves the same high security and short key
and signature sizes as Falcon. ”

Suggestion are welcome!

PS: feel free to grab a physical copy of our white paper
“The First NIST Post‐Quantum Cryptographic Standards”

https://tprest.github.io/pdf/nist-pqc-whitepaper.pdf
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Thank You!
https://falcon-sign.info/

https://falcon-sign.info/
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