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Laষce-based cryptography

Laষce-based cryptography in a nutshell [dPL17]:

Every laষce-based cryptographic construcধon relies on the fact
that when given a matrix A and a vector y over some ring R
(such as Zq or Zq[X]/(Xd +1) with the usual addiধon and mul-
ধplicaধon operaধons), it is hard to recover a vector x with small
coefficients such that

Ax = y.

Nice! Building signature schemes based on this principle should be easy, right?
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The early hash-and-sign schemes

Early proposals: GGH [GGH97] and NTRUSign [HHGP+03].

Alice Bob
SK: B ∈ Zm×m

q short s.t. BAt = 0 PK: A ∈ Zn×m
q

Sign
Compute c s.t. cA = H(m)
v← ⌊cB−1⌉B
s← c− v

s−−−−−−−−−−−−−−−−→ Verify
Accept iff
- H(m) = sA
- ∥s∥ is short

c

Outpuষng v← ⌊cB−1⌉B leaks the private key! [NR06]
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Step I - Provably secure hash-and-sign over laষces

Theoreধcal framework formalized in [GPV08].

Alice Bob
SK: B ∈ Zm×m

q short s.t. BAt = 0 PK: A ∈ Zn×m
q

Sign
Compute c s.t. cA = H(m)
Sample v ∈ ZmB close to c
s← c− v

s−−−−−−−−−−−−−−−−→ Verify
Accept iff
- H(m) = sA
- ∥s∥ is short

! v is securely sampled using a trapdoor sampler.
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Trapdoor samplers: compute z ∈ Zn such that ∥(z− t)B∥ is small

Approach 1 Approach 2

Algorithm 1 Round-off
Require: B
1: for j = n, . . . , 1 do
2: zj ← ⌊tj⌉
3: return z

Algorithm 2 Nearest plane
Require: B = L · B̃
1: for j = n, . . . , 1 do
2: t̄j ← tj +

∑
i>j(ti − zi)Lij

3: zj ← ⌊t̄j⌉

4: return z
⇓ ⇓

c c
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Algorithm 3 Rand. round-off
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1: for j = n, . . . , 1 do
2: zj ← ⌊tj⌉σ
3: return z

Algorithm 4 Rand. nearest plane
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1: for j = n, . . . , 1 do
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Trapdoor samplers: compute z ∈ Zn such that ∥(z− t)B∥ is small

Approach 1 Approach 2

Algorithm 5 Peikert’s sampler
Require: B
1: x← C · ⌊0⌉σ
2: for j = n, . . . , 1 do
3: zj ← ⌊tj−xj⌉σ
4: return z

Algorithm 6 Klein’s sampler
Require: B = L · B̃
1: for j = n, . . . , 1 do
2: t̄j ← tj +

∑
i>j(ti − zi)Lij

3: zj ← ⌊t̄j⌉σ/∥b̃j∥

4: return z
⇓ ⇓

c c
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Step II - GPV framework + NTRU laষces

Instanধaধon of the GPV framework over NTRU laষces [SS11, DLP14]

Simply take A =
[
1 h

]
and B =

[
g −f
G −F

]
, where:

fG− gF = q mod(xn + 1)
h = gf−1 mod(q, xn + 1)

(1)

Shortcomings:
1 Cumbersome key generaধon (slow, requires a lot of memory)
2 Signature generaধon is either:

õ with Klein’s sampler, secure but slow: O(n2)
õ with Peikert’s sampler, less secure but fast: O(n logn)

3 Use of floaধng-point arithmeধc (FPA)⇒ which precision?
4 Parameters may be improved (?)

The rest of this talk: addressing these shortcomings.
The techniques also apply to the IBE of [DLP14].
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I - The issue of the key generaধon

Key generaধon at a high-level:
1 generate small f, g ∈ Z[x]/(xn + 1)

2 solve the NTRU equaধon, i.e. find F,G ∈ Z[x]/(xn + 1) such that

fG− gF = 1 mod (xn + 1) (2)

3 do simple stuff

Exisধng methods for step 2 were very cumbersome in ধme (∼1 second), memory
(∼3 Mbytes) and implementaধon efforts (depends on who implements it).
Can we do beħer?
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I - Exploiধng the tower of rings structure

We have the following tower of rings:

Z ⊆ Z[x]/(x2 + 1) ⊆ · · · ⊆ Z[x]/(xn/2 + 1) ⊆ Z[x]/(xn + 1)

and the field norm allows to “navigate” along this tower!

Let Qn = Q[x]/(xn + 1). The field norm N is defined by:

N : Qn → Qn/2

f → ff× (3)

where f× denotes the Galois conjugate of f for the field extension Qn/Qn/2...
Or more simply in our case, f×(x) = f(−x).

Fun fact: if we have this relaধonship over Z[x]/(xn/2 + 1):

N(f)G′ − N(g)F ′ = 1 (4)

for some F ′, G′, then we have this relaধonship over Z[x]/(xn + 1):

f(f×G′)− g(g×F ′) = 1 (5)
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I - Outline of the new key generaধon algorithm

Z[x]/(xn + 1) ∋ f, g

→ F,G

⊊

↓ ↑

Z[x]/(xn/2 + 1)

∋ N(f),N(g) → F [1], G[1]

⊊

↓ ↑

Z[x]/(xn/4 + 1)

∋ N2(f),N2(g) → F [2], G[2]

⊊

↓ ↑

...

...
...

...

⊊

↓ ↑

Z

∋ Nℓ(f),Nℓ(g) → F [ℓ], G[ℓ]

(6)

At each lower level:
ó The coefficients grow (in bitsize) by a factor 2...
ó ... but the number of coefficients is divided by 2.

We gain in pracধce:
ó a factor 100 in memory consumpধon (⇒ 30KBytes)
ó a factor 10 in ধme

Extends techniques of “overstretched NTRU” [ABD16, KF17], but construcধvely!
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II - Fast Fourier Sampling [DP16]

Klein’s sampler interprets Qn = Q[x]/(xn + 1) as a Q-linear space of dimension n:

B =

[
g −f
G −F

]
∈ Z[x]/(xn+1)2×2 7→

[
C(g) −C(f)
C(G) −C(F )

]
∈ Z2n×2n

⇒ completely ignores the rich algebraic structure of Qn!

Spliষng polynomials between their odd and even coefficients yields this chain of
space isomorphisms:

Qn ∼= (Q2)
n/2 ∼= . . . ∼= (Qn/2)

2 ∼= Qn (7)

We will take advantage of this to devise a recursive variant of Klein’s sampler.
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We reformulate the problem that our signature algorithm solves. Given:
ó a challenge t0, t1 ∈ Qn,
ó the secret basis B ∈ Z[x]/(xn + 1)2×2 (and its GSO),

sample z0, z1 ∈ Z[x]/(xn + 1) such that (z0, z1) · B is close to (t0, t1) · B.

Can we sample z1 so that (0, z1) ·B is close to (0, t1) ·B, then adapধvely sample z0?
ó OK, just a generalizaধon of Klein’s sampler over Qn instead of Q.

Problem: sampling z1 boils down to making z1g close to t1g for a given g ∈ Qn.
How to do that opধmally without completely breaking the structure?

ó Break Qn into Q2
n/2!

ó By spliষng in odds/even coefficients, z1, t1 can be seen as elements of Q2
n/2.

ó Similarly, g can be seen as an element of Q2×2
n/2 (because it actually is an

endomorphism).

Situaধon now idenধcal to the beginning, but over a smaller subfield⇒ recursion!
We can find vectors as close as Klein’s sampler would, but in ধme O(n logn).
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Security proofs involving distribuধons

ó The standard approach: using the staধsধcal distance ∆.
õ Take a hard problem relying on some ideal distribuধon Q,
õ Replace Q by a “real-life” distribuধon P ,
õ If ∆(P,Q) is small enough, we win: the problem is sধll hard.

ó Laষce-based cryptography: ođen relevant to replace SD by Rényi divergence.
õ More aggressive parameters [LSS14, LPSS14, BLL+15, BGM+16, Pre17, HLS17]
õ KEMs distribuধons [ADPS16, BCD+16]
õ Reducধon between LWE problems [AD17]

Example. We consider a cryptographic scheme doing q queries to a distribuধon Di

(i ∈ {0, 1}), we note εi the probability of an event.
ó With the staধsধcal distance:

ε0 ≥ ε1 − q∆(D1,D0) ∆ ≤ 2−λ ⇒ we win

ó With the Rényi divergence:

ε0 ≥ ε
a

a−1
1 /Ra(D1∥D0)

q logRa ≤ 1/q ⇒ we win
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III - Improving the required precision with the Rényi divergence

What is the proper way to evaluate the required precision of the FPA operaধons?
ó Staধsধcal distance analysis⇒ FPA operaধons require a precision of

λ+ polylog(n, ...) bits.
ó Rényi divergence analysis⇒ FPA operaধons require a precision of

log2(qs)/2 + polylog(n, ...) bits, where qs is the number of public queries

In NIST’s CFP, log2(qs) ≤ 64⇒ taking a precision of 53 bits is (provably!) sufficient.
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IV - Improving the standard deviaধon with the Rényi divergence

c c c

σ too small The “right” σ σ too large

1 σ too large⇒ the trapdoor sampler is useless in a cryptographic context.
2 σ too small⇒ the trapdoor sampler does not behave like a perfect Gaussian.
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IV - Improving the standard deviaধon with the Rényi divergence

q λ

σ
Hardness
SD [GPV08, DN12]
RD
RD (q ≤ 264)

The adequate value for σ is at the intersecধon of the hardness curve (constraint 1 )
and the SD/RD curve (constraint 2 ).

ó Rényi divergence-based analysis is much more efficient than if SD-based.
ó Interesধng fact: in pracধce, σ is not condiধoned by λ but by q.

In pracধce, we gain about 30 bits of security (compared to the SD).
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Falcon

The product of all these improvements is Falcon (joint work with Fouque, Hoffstein,
Kirchner, Lyubashevsky, Pornin, Ricosset, Seiler, Whyte, Zhang).
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Falcon vs laষce-based Fiat-Shamir schemes

Fiat-Shamir schemes:
ó Arguably simpler
ó Avoid floaধng-point arithmeধc
ó Easy to protect against SCA (⇒ large signatures)
ó Hard security proofs in the QROM

Falcon:
ó Easy security proof in the QROM [BDF+11]
ó Small public key and signatures. In addiধon:

õ Opt. mode 1: key recovery⇒ public key can be compressed to 40 bytes
õ Opt. mode 2: message recovery⇒ small message can be recovered from signature

ó Easy to extend to advanced construcধons (ABE, (H)IBE, etc.)
ó Hard to protect against SCA
ó Currently uses floaধng-point arithmeধc
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https://falcon-sign.info

Thanks!

Thanks to Fabrice Mouhartem for the Falcon origami!

https://falcon-sign.info
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