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Lattice-based cryptography

Lattice-based cryptography in a nutshell [dPL17]:

Every lattice-based cryptographic construction relies on the fact
that when given a matrix A and a vector y over some ring R
(such as Z, or Zy[X]/(X% + 1) with the usual addition and mul-
tiplication operations), it is hard to recover a vector x with small

coefficients such that
Ax =vy.

Nice! Building signature schemes based on this principle should be easy, right?
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A (non-exhaustive) timeline of lattice-based signature schemes
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The early hash-and-sign schemes

Early proposals: GGH [GGH97] and NTRUSign [HHGP+03].

Alice Bob
SK: B € Z7"*™ short s.t. BA" =0 PKiA € Zg*™
Sign
Compute ¢ s.t. cA = H(m)
v+ [cB7!]B
S Cc—V
s Verify
Accept iff
- H(m) =sA

- |Is]| is short
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The early hash-and-sign schemes

Early proposals: GGH [GGH97] and NTRUSign [HHGP103].
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Alice Bob
SK: B € Z7"*™ short s.t. BA' =0 PKiA e zZg™™
Sign
Compute ¢ s.t. ¢A = H(m)
S+ c—V
s Verify
Accept iff
-H(m) =sA
- |Is|| is short

Outputting v + [cB™1]B leaks the private key! [NRO6]
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Step | - Provably secure hash-and-sign over lattices

Theoretical framework formalized in [GPVO8].

Alice Bob
SK: B € Z7"*™ short s.t. BA' =0 PKiA e zZg™™
Sign

Compute cs.t. €A = H(m)
Sample v € Z™B close to ¢
S« Cc—V

Verify
Accept iff

- H(m) =sA
- |Is]| is short

(D vis securely sampled using a trapdoor sampler.
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Trapdoor samplers: compute z € Z" such that ||(z — t)B|| is small

Approach 1 Approach 2

Algorithm 1 Round-off Algorithm 2 Nearest plane
Requirei B Require: B=1L-B

1. forj=mn,...,1do 1: forj=mn,...,1do

2z < [] 2ty ety 30 (b — i) Ly

3: return z 3 zj + [t

4: return z
g
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Trapdoor samplers: compute z € Z" such that ||(z — t)B|| is small

Approach 1 Approach 2

Algorithm 3 Rand. round-off Algorithm 4 Rand. nearest plane
Require{ B Require: B=1L-B

1. forj=mn,...,1do 1: forj=mn,...,1do

2: zj < |tj]o 2: tj —t; + Zi>j(ti — zi)Lij

3: return z 3z« (4],

4: return z
4
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Trapdoor samplers: compute z € Z" such that ||(z — t)B|| is small

Approach 1

Algorithm 5 Peikert’s sampler

Require: B
1: x«+ C- 0],
2. forj=mn,...,1do
&z [t
4: return z

Approach 2

Algorithm 6 Klein's sampler

Require: B=L-B

1: forj=mn,...,1do
2: t; < t]'_+ Zi>j(ti — Zz)L”
3 Zj < Ltﬂn/\u}‘,u

4: return z
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Step II - GPV framework + NTRU lattices

Instantiation of the GPV framework over NTRU lattices [SS11, DLP14]
. B _ 9| -f .
Simply take A=[ 1| h JandB = { oT—F . where:

fG—gF
h

q mod(z™ + 1) (1)
gf~' mod(g,z" +1)

Shortcomings:
® Cumbersome key generation (slow, requires a lot of memory)
® Signature generation is either:
= with Klein's sampler, secure but slow: O(n?)
= with Peikert's sampler, less secure but fast: O(nlogn)
©® Use of floating-point arithmetic (FPA) = which precision?
@ Parameters may be improved (?)

The rest of this talk: addressing these shortcomings.
The techniques also apply to the IBE of [DLP14].
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| - The issue of the key generation

Key generation at a high-level:
O generate small f, g € Z[z]/(z™ + 1)
@ solve the NTRU equation, i.e. find F, G € Z[z]/(z™ + 1) such that
fG—gF =1mod (z" + 1) (2)

® do simple stuff
Existing methods for step 2 were very cumbersome in time (~1 second), memory

(~3 Mbytes) and implementation efforts (depends on who implements it).
Can we do better?
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| - Exploiting the tower of rings structure

We have the following tower of rings:

ZC Zla]/(z* +1) C - C Zfa)/(z"* +1) C Zla]/(a" + 1)
and the field norm allows to “navigate” along this tower!
Let @, = Q[z]/(z™ 4+ 1). The field norm N is defined by:

N : Q'n — Qn/2

3)
o= ff
where f* denotes the Galois conjugate of f for the field extension Qn/Q./2...
Or more simply in our case, f*(z) = f(—=z).
Fun fact: if we have this relationship over Z[z]/(z™/? + 1):
N(f)G" = N(g)F' =1 )

for some F’, G', then we have this relationship over Z[z]/(z"™ + 1):

f(f*G)—g(g"F')=1 (5)
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| - Outline of the new key generation algorithm

Zlz]/(z" +1) > f.a
Ut
Zlz) /("2 + 1)
Ut
Z[z]/(z"* + 1) (6)
Ut

Ut
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| - Outline of the new key generation algorithm

Zlz]/(z" +1) 3 f.g
Ut 1
Zlz]/(z"? +1) > N(f),N(g)
Ut
Z[z]/(a"* + 1)
Ut

(e]e]



Zlz]/(=z" +1) > fg

Ut 1
Zlz)/(z™!?
H/(u +1) > N(f)iN(g)
7zl (x4 2 2
[ ]/(w +1) > N(f),N%(9)
Ui
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Zlz]/(z" +1) 3 f.g
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Ut 1
Zlz]/(@"* +1) > N2(f),N*(g)
Ut J
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| - Outline of the new key generation algorithm

Zlz]/(z" +1) 3 f.g
Ut 1
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Ut 1
Zlz]/(@"* +1) > N2(f),N*(g)
Ut J
Ut 1



From GPV to Falcon
L]

| - Outline of the new key generation algorithm

Zlz]/(z" +1) 3 f.g
Ut 1
Zlz]/(z"? +1) > N(f),N(g)
Ut 1
Zlz]/(@"* +1) > N2(f),N*(g)
Ut J
Ut 1
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| - Outline of the new key generation algorithm

Z[z]/(z™ 4+ 1) > fg — F,G
Ut + T
Zlz]/(z"*+1) > N(f),N(g) — rbgl
Ut ¢ 0
Zlz)/(z"* +1) > N2(f),N*(g) — FB GHP
Ut ’ 0

Ut 1
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| - Outline of the new key generation algorithm

Z[z]/(z" +1) > f.g - F.G
Ut { 0
Zlx)/(z"?*+1) > N(f),Ng — FMHGI
Ut { 0
Zlz]/(z"*+1) 3 N(f),N’(g) — FPL.GP
Ut 1 0

Ut 1
7 5 NYS),Ng) — F¥ @i

At each lower level:
> The coefficients grow (in bitsize) by a factor 2...
= but the number of coefficients is divided by 2.
We gain in practice:
= g factor 100 in memory consumption (= 30KBytes)
= 3 factor 10 in time
Extends techniques of “overstretched NTRU” [ABD16, KF17], but constructively!
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Il - Fast Fourier Sampling [DP16]

Klein's sampler interprets Q,, = Q[z]/(z™ + 1) as a Q-linear space of dimension n:

B= { é :1]; } € Zlz]/(z" +1)**? - [ g((g)) :g((p) } € 72nxn

= completely ignores the rich algebraic structure of Q!
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Il - Fast Fourier Sampling [DP16]

Klein's sampler interprets Q,, = Q[z]/(z™ + 1) as a Q-linear space of dimension n:

Clg) | =C) ] ¢ gomsen

B= { g | =f } € Z[z]/(z" +1)*** = [ C(GY | —C(F)

G| —-F

= completely ignores the rich algebraic structure of Q!

Splitting polynomials between their odd and even coefficients yields this chain of
space isomorphisms:

Q"2 (Q)"? ... 2 (Q,)? >0, 7)

We will take advantage of this to devise a recursive variant of Klein's sampler.
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We reformulate the problem that our signature algorithm solves. Given:
# g challenge to,t1 € Qn,
= the secret basis B € Z[x]/(z™ + 1)?*2 (and its GSO),

sample zo, z1 € Z[z]/(z™ + 1) such that (2o, z1) - B is close to (¢o, t1) - B.

Can we sample z1 so that (0, z1) - B'is close to (0, ¢1) - B, then adaptively sample zo?
= OK, just a generalization of Klein's sampler over Q,, instead of Q.
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We reformulate the problem that our signature algorithm solves. Given:
# g challenge to,t1 € Qn,
= the secret basis B € Z[x]/(z™ + 1)?*2 (and its GSO),

sample zo, z1 € Z[z]/(z™ + 1) such that (2o, z1) - B is close to (¢o, t1) - B.

Can we sample z1 so that (0, z1) - B'is close to (0, ¢1) - B, then adaptively sample zo?
= OK, just a generalization of Klein's sampler over Q,, instead of Q.

Problem: sampling z; boils down to making z1 g close to t1g for a given g € Q,,.
How to do that optimally without completely breaking the structure?
= Break Q, into Q2 !

= By splitting in odds/even coefficients, z1, t1 can be seen as elements of Qi/Q.

=r Similarly, g can be seen as an element of 1722 (because it actually is an

endomorphism).
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We reformulate the problem that our signature algorithm solves. Given:
# g challenge to,t1 € Qn,
= the secret basis B € Z[x]/(z™ + 1)?*2 (and its GSO),

sample zo, z1 € Z[z]/(z™ + 1) such that (2o, z1) - B is close to (¢o, t1) - B.

Can we sample z1 so that (0, z1) - B'is close to (0, ¢1) - B, then adaptively sample zo?
= OK, just a generalization of Klein's sampler over Q,, instead of Q.

Problem: sampling z; boils down to making z1 g close to t1g for a given g € Q,,.
How to do that optimally without completely breaking the structure?

= Break Q, into Q2 !

= By splitting in odds/even coefficients, z1, t1 can be seen as elements of Qi/Q.

2X2

o (because it actually is an

=r Similarly, g can be seen as an element of
endomorphism).

Situation now identical to the beginning, but over a smaller subfield = recursion!
We can find vectors as close as Klein's sampler would, but in time O(n logn).
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Security proofs involving distributions

#» The standard approach: using the statistical distance A.
= Take a hard problem relying on some ideal distribution Q,
= Replace Q by a “real-life” distribution P,
= If A(P, Q) is small enough, we win: the problem is still hard.
» Lattice-based cryptography: often relevant to replace SD by Rényi divergence.

= More aggressive parameters [LSS14, LPSS14, BLLT15, BGM* 16, Pre17, HLS17]
= KEMs distributions [ADPS16, BCDT16]
= Reduction between LWE problems [AD17]

Example. We consider a cryptographic scheme doing ¢ queries to a distribution D;
(¢ € {0,1}), we note g; the probability of an event.

= \With the statistical distance:

€0 > €1 — qA(D1, Do) ’ A<27™ = we vvin‘

= With the Rényi divergence:

—a

€0 > el " /Ra(D1||Do)" ] log Ra < 1/q = we win ‘
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[l - Improving the required precision with the Rényi divergence

What is the proper way to evaluate the required precision of the FPA operations?

# Statistical distance analysis = FPA operations require a precision of
A + polylog(n, ...) bits.

= Rényi divergence analysis = FPA operations require a precision of
log,(gs)/2 + polylog(n, ...) bits, where ¢ is the number of public queries

In NIST's CFP, log,(gs) < 64 = taking a precision of 53 bits is (provably!) sufficient.
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IV - Improving the standard deviation with the Rényi divergence

o too small The “right” o o too large

® o too large = the trapdoor sampler is useless in a cryptographic context.
® o too small = the trapdoor sampler does not behave like a perfect Gaussian.

schemes From GPV to Falcon Conclusiol
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IV - Improving the standard deviation with the Rényi divergence

— Hardness

—— SD [GPVO08, DN12]
RD
RD (g < 2%

q A

The adequate value for o is at the intersection of the hardness curve (constraint @)
and the SD/RD curve (constraint @).

= Rényi divergence-based analysis is much more efficient than if SD-based.
= |nteresting fact: in practice, o is not conditioned by X but by q.
In practice, we gain about 30 bits of security (compared to the SD).
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Falcon

The product of all these improvements is Falcon (joint work with Fouque, Hoffstein,
Kirchner, Lyubashevsky, Pornin, Ricosset, Seiler, Whyte, Zhang).

Bytesizes of public key/signature (Lv5)

10000 000,

RA40%  EDSA256 DUTHUM  FAON  GeMSS  GravitySPHINGS  Gui HiMG-S wov MQDSS  paNTRUSgn  Picnic QTBLA Ranbow  Ranksign  SPHINGS®

mPublc Ky mSignature
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Falcon

The product of all these improvements is Falcon (joint work with Fouque, Hoffstein,
Kirchner, Lyubashevsky, Pornin, Ricosset, Seiler, Whyte, Zhang).

Cycles for signing/verifying (Lv5)

DUTHUM  FALCON Mo Ranksign  SPHINCS+
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Falcon vs lattice-based Fiat-Shamir schemes

Fiat-Shamir schemes:
= Arguably simpler
= Avoid floating-point arithmetic
# Easy to protect against SCA (= large signatures)
» Hard security proofs in the QROM

Falcon:

= Easy security proof in the QROM [BDF*11]
= Small public key and signatures. In addition:

= Opt. mode 1: key recovery = public key can be compressed to 40 bytes
= Opt. mode 2: message recovery = small message can be recovered from signature

» Easy to extend to advanced constructions (ABE, (H)IBE, etc.)
= Hard to protect against SCA
= Currently uses floating-point arithmetic
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https://falcon-sign.info

Thanks!

Thanks to Fabrice Mouhartem for the Falcon origami!


https://falcon-sign.info
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