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Hash-then-Sign



Initial attempts: NTRUSign (1997), GGHSign (2003)

Keygen(1λ)

1 Gen. matrices A,B such that:
A is pseudorandom
A · B = 0
B has small coefficients

2 pk := A, sk := B

Sign(msg, sk = B)

1 Compute c such that A · c = H(msg)
2 v := B

⌊
B−1c

⌉
3 sig := s = (c− v)

Verify(msg, pk = A, sig = s)

Check (s short) & (A · s = H(msg))

cv

Correctness: easy
Security: Finding a short preimage s of H(msg) should be difficult... or is it?
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The parallelepiped attack

Problem: The distribution of the signature s is correlated to B

s = c− B
⌊
B−1c

⌉
∈
[
−1
2
,
1
2

]
· B (1)

cv

Given many signatures, B can be recovered using techniques from
Independent Component Analysis (ICA)

2006: key‐recovery on NTRUSign and GGHSign
2012: key‐recovery against NTRUSign countermeasures



Design-level solution: trapdoor sampling à la “GPV”

B
⌊
B−1c

⌉
B
⌊
B−1c

⌉
σ1 B

⌊
B−1

(
c+M ⌊0⌉σ2

)⌉
σ1

c c

Indistinguishability: For appropriately chosen parameters, the rightmost procedure
outputs a distribution close to a perfect Gaussian DΛ(B),c,σ.

Consequence: these two worlds are indistinguishable (in the ROM)
1 Sample a short vector s, then set H(msg) = A · s
2 Compute H(msg), then use B to sample a short preimage s of H(msg)



What are the next steps?

The GPV framework requires two ingredients:
1 A family of trapdoors (A,B)
2 A trapdoor sampler for computing a short preimage s

Falcon: our goal is to minimize the communication cost



Computing a suitable (A,B) – NTRU trapdoors
NTRU trapdoors

Let f, g, F,G ∈ R such that:

fG− gF = q (2)
h := g/f mod q (3)

We set A =
[
1 h

]
and B =

[
g G
−f −F

]
.

Pseudorandomness of A: NTRU assumption.

Orthogonality: One can easily show that A · B = 0 mod q.

Shortness of B: Given (f, g), one can compute suitable (F,G) such that∥∥∥ProjSpan(f,g)⊥(F,G)∥∥∥ ≈ q
∥(f, g)∥

(4)

It is optimal to take ∥(f, g)∥ ≈ 1.17√q.
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Computing a lattice point v close to the target c
RoundOff(B, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj
⌋

3 Return v := z · B

⇓

cv

NearestPlane(B, L, c)

1 t← c · B−1

2 For j ∈ {n, . . . ,1}:
1 zj ←

⌈
tj +

∑
i>j(t1 − zi)Li,j

⌋
3 Return v := z · B

⇓

The second algorithm is better for security.



Picking the right σ

We combine NearestPlane with Gaussian rounding to obtain a discretized Gaussian.

σ too small The “right” σ

c

σ too large

c

1 σ too small⇒ vulnerable to learning attacks [NR06, DN12]
2 σ too large⇒ suboptimal for cryptography



Standard deviation analysis

Θ(σ2)
Θ(σ2)

1
Q · e

Θ(σ2)

σ

λ BKZ‐Hardness
SD [GPV08]
KLD [DLP14]
RD [Pre17]

For Q = 264, we gain about 30 bits of security (compared to the SD).



Signature schemes in the GPV family

GPV sig‐
natures

NTRU
trapdoors

Micciancio‐
Peikert
trapdoors

Falcon

Mitaka

SOLMAE

[CGM19]

[ZY22]

[YJW23]

Falcon = GPV framework + NTRU trapdoors + Fast Fourier sampler + optimizations



Side-Channel
Attacks



Side-channel attacks in cryptography

Power analysis
attacks [KJJ99]

Acoustic attacks [AA04]

Electromagnetic
attacks [Eck85]

Visual attacks [NIC+23]

Timing attacks [Koc96]

And more...



The return of the parallelepiped attacks

In Falcon, a signature s is distributed as a Gaussian.
The power consumption leaks information about the dot product ⟨s,b0⟩, or s itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning s directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]
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Figure 1: Flowchart of the signature
Filtering ⟨s,b0⟩ close to zero

2The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon [GMRR22]



The return of the parallelepiped attacks

In Falcon, a signature s is distributed as a Gaussian.
The power consumption leaks information about the dot product ⟨s,b0⟩, or s itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

SamplerZ

Figure 1: Flowchart of the signature
Filtering ⟨s,b0⟩ > 0

3Improved Power Analysis Attacks on Falcon [ZLYW23]



Countermeasures

Against timing attacks: make signing isochronous (“cryptographic constant time”)
BaseSampler reads a full table
BerExp implements rejection sampling via polynomial approximation

The signing procedure is isochronous assuming that some basic FPA operations are.

Protection beyond timing attacks?
[GMRR22, ZLYW23] propose countermeasures but they are ad hoc and only
make their attacks more expensive to mount
In general, the most robust countermeasure is masking

Masking Falcon is going to be very difficult
If masking is important, use Raccoon (github.com/masksign/raccoon)

github.com/masksign/raccoon


When to Deploy



Pros and cons

Pros
Compact public key and signature sizes
Very fast verification
Signing is also fast, but less than Dilithium

Cons
Key generation and signing require FPA

Be mindful on devices with non‐existent or variable‐time FPA units
Say goodbye to masking

Key generation and signing are complex to implement
Key generation is slow‐ish



Mapping Falcon properties to applications

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSECTLS

Embedded verif.



Vehicle-to-vehicle (V2V) communications

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSECTLS

Embedded verif.

Drive (Quantum) Safe! – Towards
Post‐Quantum Security for V2V
Communications [BMTR22]

“ Only signature schemes whose ex‐
plicit certificate can be sent in five
or less fragments can be used in the
True Hybrid design. [...] Falcon is the
only viable scheme. ”



TLS certificates

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSEC

TLS

Embedded verif.

Post‐Quantum Authentication in TLS 1.3: A
Performance Study [SKD20]

“ The PQ algorithms with the best
performance for time‐sensitive ap‐
plications are Dilithium and Falcon. ”

NIST’s pleasant post‐quantum surprise
[Wes22] recommends:

Falcon for offline signature
Dilithium for handshake



Verification on embedded devices

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSECTLS

Embedded verif.

FPGA Energy Consumption of
Post‐Quantum Cryptography [BKG22]

“ For signature verification, Falcon
provides the lowest energy con‐
sumption, highest throughput, and
lowest transmission size [compared
to Dilithium and SPHINCS+]. ”

Verifying Post‐Quantum Signatures in 8 kB
of RAM [GHK+21]

“ On Cortex‐M3, [Falcon’s] overall
memory footprint is about 6.5 kB. ”



DNSSEC

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSEC

TLS

Embedded verif.

Retrofitting Post‐Quantum Cryptography in
Internet Protocols:
A Case Study of DNSSEC [MdJvH+20]

“ [...] the performance of Falcon‐
512 is closest to the current algo‐
rithms and meets the requirements
of DNSSEC. ”

Post‐Quantum Signatures in DNSSEC via
Request‐Based Fragmentation [GS22]

“ [...] Falcon‐512 may be the most
suitable option currently available to
be standardized for DNSSEC. ”



Summary

Compact
sizes

Worst‐case
running
time

Verification
speed

Verification
memory

V2V

DNSSECTLS

Embedded verif.

Suitable applications:
V2V
TLS certificates
Verification on embedded devices
DNSSEC
...



Questions?
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