
More Efficient Protocols for
Post-Quantum Secure

Me≦aging
Keitaro Hashimoto

AIST
Shuichi Katsumata
PQShield & AIST

Eamonn W. Postlethwaite
King’s College London

Thomas Prest
PQShield

Bas Westerbaan
Cloudflare

Real World Crypto 2024

Post-quantum and secure messaging

June
2022

June
2023

Sept.
2023

Febr.
2024

NIST announces
PQC standards

IETF
standardises

MLS

Signal deploys
PQXDH

Apple deploys
PQ3

MLS: post‐quantum ready
PQXDH: post‐quantum handshake, classical double ratchet
PQ3: post‐quantum handshake, post‐quantum double ratchet*
Next step: scalability

High-level view (two-users case)

.

Establish a shared secret key Handshake

Encrypt messages with
Update

Continuous Key
Agreement (CKA)

Post‐quantum instantiations:
Handshake: KEM + (ring) signatures + symmetric crypto [HKKP21, BFG+22]
Continuous Key Agreement (CKA): KEM + symmetric crypto [ACD19]

PQ continuous key agreement

+ +

.

Establish a shared secret key Handshake

Continuous Key
Agreement (CKA)

Each user has a KEM keypair
updates her cryptographic material as follows:

1 Generate a new KEM keypair and randomness
2 Update with randomness
3 Send new encryption key () + encrypted randomness () to

Both and are able to derive the updated

The Group Setting

This talk: bandwidth

1 Bandwidth likely to be a bottleneck of PQ messaging, due to three factors:
1 Mobile data plans
2 Post‐quantum primitives
3 Continuous group key agreement (CGKA) protocols

2 Existing CGKAs can incur high bandwidth consumption
The bottleneck is in the public‐key cryptography

3 Propose a bandwidth‐efficient CGKA

How much does 1 GB of mobile data cost?

Median
cost:
≤ $0.50

≤ $1.00

≤ $5.00

≥ $5.00

Data extracted from a Cable.co.uk study [Cab23]. Notes:
Small data plans are common in many countries.
Reaching data caps significantly impacts UX.

Further observations

These observations will guide our design choices:

Uploading and downloading data typically have the same monetary cost

We expect speed to impact UX for application messages but not CGKA:
Application messages are visible
CGKA is invisible (ideally)

See [Spe23] for complete data on worldwide mobile speed

Large groups require more frequent key updates
Over 1 day, suppose each user gets compromised with probability ε.
Over T days, a group with N users remains uncompromised with probability

(1− ε)N·T ≤ exp (−ε · N · T)

But existing CGKA may require high bandwidth (next slides)

Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels
Physical layer

(N‐1)× (+ +)

+
+

+
+

+
+
+

+

Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

(= encryption key, = ciphertext, = signature)

Naive CGKA – pairwise channels

Physical layer

(N‐1)×

Insider view

Sending a single picture () of 100 Kilobytes with N = 256:
25.5 Megabytes for the sender, 100 kB for each downloader

MLS’ CGKA – TreeKEM

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)
Application messages: One key for all users

When a user (here) updates their key, they broadcast:
logN encryption keys ()
logN ciphertexts ()
2 signatures () – one for encryption keys, one for ciphertexts

MLS’ CGKA – TreeKEM

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)
Application messages: One key for all users
When a user (here) updates their key, they broadcast:

logN encryption keys ()
logN ciphertexts ()
2 signatures () – one for encryption keys, one for ciphertexts

What if we use a flat tree?

This is essentially Chained mKEM [BBN19]
The tree invariant remains identical (and simpler)

When a user (here) updates their key, they broadcast:
1 encryption key () N− 1 ciphertexts () 2 signatures ()

At first glance, less efficient than TreeKEM!
Can we improve efficiency?

What if we use a flat tree?

This is essentially Chained mKEM [BBN19]
The tree invariant remains identical (and simpler)
When a user (here) updates their key, they broadcast:

1 encryption key () N− 1 ciphertexts () 2 signatures ()

At first glance, less efficient than TreeKEM!
Can we improve efficiency?

What if we use a flat tree & lazy downloading?

Lazy downloading:
Users only download what they need, i.e. user j only need the j‐th ciphertext
How do we keep compatibility with the signatures?

One signature per ciphertext→ costly
Merkle tree→ better but same asymptotic cost as TreeKEM
We sign the epoch’s confirmation tag (derived from and the public view)
> Idea implicit in [HKP+21, Footnote 5], explicit in [AHKM22]
> [HKP+21] also used committing mPKE, but this is not necessary

Our proposed protocol
One channel: a single shared secret for the whole group

Sending application messages is cheap
One signature:

A single signature authenticates the encryption key & all ciphertexts
Compatible with lazy downloading

Our proposed protocol
One channel: a single shared secret for the whole group

Sending application messages is cheap
One signature:

A single signature authenticates the encryption key & all ciphertexts
Compatible with lazy downloading

+ +

+
+ +
+

+ +

+
++
+

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!

Bandwidth costs for a group of size N

Scheme Application
message

Update
(upload)

Update
(download)

Update
(total)

Pairwise channels O(N) O(N) O(1) O(N)

TreeKEM (MLS) O(1) O(log N)∗ O(log N)∗ O(N log N)∗

Our protocol O(1) O(N)† O(1) O(N)

*Best‐case complexity
†With multi‐recipient KEMs, we gain an order of magnitude in the O() constant.

Further reading

Full paper:
Hashimoto, Katsumata, Postlethwaite, Prest and Westerbaan:
A Concrete Treatment of Efficient Continuous Group Key Agreement via
Multi‐Recipient PKEs [HKP+21]

See also:
Kwiatkowski, Katsumata, Pintore and Prest:
Scalable Ciphertext Compression Techniques for Post‐Quantum KEMs and their
Applications [KKPP20]

Alwen, Hartmann, Kiltz and Mularczyk:
Server‐Aided Continuous Group Key Agreement [AHKM22]

Note: we are hiring post‐docs on secure messaging!

Questions?

Joël Alwen, Sandro Coretti, and Yevgeniy Dodis.
The double ratchet: Security notions, proofs, and modularization for the Signal protocol.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
129–158. Springer, Heidelberg, May 2019.

Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk.
Server‐aided continuous group key agreement.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 69–82.
ACM Press, November 2022.

Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg.
Formal Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS.
Research report, Inria Paris, December 2019.

Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post‐quantum asynchronous deniable key exchange and the Signal handshake.
In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part II, volume 13178
of LNCS, pages 3–34. Springer, Heidelberg, March 2022.

Cable.co.uk.
Worldwide Mobile Data Pricing 2023 | 1GB Cost in 230 Countries, 2023.
https://www.cable.co.uk/mobiles/worldwide-data-pricing/.

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.

https://www.cable.co.uk/mobiles/worldwide-data-pricing/

An efficient and generic construction for Signal’s handshake (X3DH): Post‐quantum, state leakage
secure, and deniable.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 410–440. Springer,
Heidelberg, May 2021.

Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas
Westerbaan.
A concrete treatment of efficient continuous group key agreement via multi‐recipient PKEs.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1441–1462. ACM Press,
November 2021.

Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest.
Scalable ciphertext compression techniques for post‐quantum KEMs and their applications.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS,
pages 289–320. Springer, Heidelberg, December 2020.

Speedtest.
Speedtest global index – internet speed around the world, July 2023.
https://www.speedtest.net/global-index.

https://www.speedtest.net/global-index

	The Group Setting
	Questions?

