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Post-quantum and secure messaging
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PQ3

MLS: post‐quantum ready
PQXDH: post‐quantum handshake, classical double ratchet
PQ3: post‐quantum handshake, post‐quantum double ratchet*
Next step: scalability



High-level view (two-users case)

. . . . . .

Establish a shared secret key Handshake

Encrypt messages with
Update

Continuous Key
Agreement (CKA)

Post‐quantum instantiations:
Handshake: KEM + (ring) signatures + symmetric crypto [HKKP21, BFG+22]
Continuous Key Agreement (CKA): KEM + symmetric crypto [ACD19]



PQ continuous key agreement

+ +

. . . . . .

Establish a shared secret key Handshake

Continuous Key
Agreement (CKA)

Each user has a KEM keypair
updates her cryptographic material as follows:

1 Generate a new KEM keypair and randomness
2 Update with randomness
3 Send new encryption key ( ) + encrypted randomness ( ) to

Both and are able to derive the updated



The Group Setting



This talk: bandwidth

1 Bandwidth likely to be a bottleneck of PQ messaging, due to three factors:
1 Mobile data plans
2 Post‐quantum primitives
3 Continuous group key agreement (CGKA) protocols

2 Existing CGKAs can incur high bandwidth consumption
The bottleneck is in the public‐key cryptography

3 Propose a bandwidth‐efficient CGKA



How much does 1 GB of mobile data cost?

Median
cost:
≤ $0.50

≤ $1.00

≤ $5.00

≥ $5.00

Data extracted from a Cable.co.uk study [Cab23]. Notes:
Small data plans are common in many countries.
Reaching data caps significantly impacts UX.



Further observations

These observations will guide our design choices:

Uploading and downloading data typically have the same monetary cost

We expect speed to impact UX for application messages but not CGKA:
Application messages are visible
CGKA is invisible (ideally)

See [Spe23] for complete data on worldwide mobile speed

Large groups require more frequent key updates
Over 1 day, suppose each user gets compromised with probability ε.
Over T days, a group with N users remains uncompromised with probability

(1− ε)N·T ≤ exp (−ε · N · T)

But existing CGKA may require high bandwidth (next slides)



Naive CGKA – pairwise channels
Physical layer Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

( = encryption key, = ciphertext, = signature)
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Naive CGKA – pairwise channels
Physical layer
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Insider view

Cost of one update with N = 256, Kyber‐512 and Dilithium‐2:
1 MB for the sender, 4 kB for each downloader

( = encryption key, = ciphertext, = signature)



Naive CGKA – pairwise channels

Physical layer

(N‐1)×

Insider view

Sending a single picture ( ) of 100 Kilobytes with N = 256:
25.5 Megabytes for the sender, 100 kB for each downloader



MLS’ CGKA – TreeKEM

The N users are arranged as the leaves of a (binary) tree
Tree invariant: (user knows the private key of a node)⇔ (node is in the path of user)
Application messages: One key for all users

When a user (here ) updates their key, they broadcast:
logN encryption keys ( )
logN ciphertexts ( )
2 signatures ( ) – one for encryption keys, one for ciphertexts
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What if we use a flat tree?

This is essentially Chained mKEM [BBN19]
The tree invariant remains identical (and simpler)

When a user (here ) updates their key, they broadcast:
1 encryption key ( ) N− 1 ciphertexts ( ) 2 signatures ( )

At first glance, less efficient than TreeKEM!
Can we improve efficiency?
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What if we use a flat tree & lazy downloading?

Lazy downloading:
Users only download what they need, i.e. user j only need the j‐th ciphertext
How do we keep compatibility with the signatures?

One signature per ciphertext→ costly
Merkle tree→ better but same asymptotic cost as TreeKEM
We sign the epoch’s confirmation tag (derived from and the public view)
> Idea implicit in [HKP+21, Footnote 5], explicit in [AHKM22]
> [HKP+21] also used committing mPKE, but this is not necessary



Our proposed protocol
One channel: a single shared secret for the whole group

Sending application messages is cheap
One signature:

A single signature authenticates the encryption key & all ciphertexts
Compatible with lazy downloading
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Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Optimization: multi-recipient KEMs

Main idea: with lattice‐based encryption:

{encrypt 1 message to N parties}≪ {encrypt N messages to N parties}

Example:
1 Kyber ciphertext:

640 128

N Kyber ciphertexts:
640 128 ... 640 128

1 “multi‐recipient” Kyber ciphertext for N parties:
640 128 128 128 ... 128

1 Ilum/mKyber [HKP+21] ciphertext for N parties:
704 48 48 48 ... 48

More details at the Fifth NIST PQC conference (April 10‐12, 2024, Rockville, USA)!



Bandwidth costs for a group of size N

Scheme Application
message

Update
(upload)

Update
(download)

Update
(total)

Pairwise channels O(N) O(N) O(1) O(N)

TreeKEM (MLS) O(1) O(log N)∗ O(log N)∗ O(N log N)∗

Our protocol O(1) O(N)† O(1) O(N)

*Best‐case complexity
†With multi‐recipient KEMs, we gain an order of magnitude in the O( ) constant.



Further reading

Full paper:
Hashimoto, Katsumata, Postlethwaite, Prest and Westerbaan:
A Concrete Treatment of Efficient Continuous Group Key Agreement via
Multi‐Recipient PKEs [HKP+21]

See also:
Kwiatkowski, Katsumata, Pintore and Prest:
Scalable Ciphertext Compression Techniques for Post‐Quantum KEMs and their
Applications [KKPP20]

Alwen, Hartmann, Kiltz and Mularczyk:
Server‐Aided Continuous Group Key Agreement [AHKM22]

Note: we are hiring post‐docs on secure messaging!



Questions?
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