
Masking-Friendly Lattice
Schemes and Lattice-Friendly

Masking Schemes
Thomas Prest (joint work with/by Rafael del Pino, Mélissa Rossi, Markku Saarinen &

Shuichi Katsumata)

April 3, 2025

Why this Talk?

Why this talk?

Observation: masking and post‐quantum standards have poor compatibility.
1 Can we design lattice‐based cryptosystems more suitable for masking?
2 Can we design masking schemes more suitable for lattice cryptosystems?

Lattice Schemes &
Masking

Motivation
ML‐DSA SLH‐DSA

FN‐DSA
NIST PQC standards, selected in 2022,
strike a balance between several criteria.

But what about :
Side‐channel protection?

Size Speed Portability Assumptions SCA protection

Motivation
ML‐DSA SLH‐DSA

FN‐DSA Raccoon (2023)

Size Speed Portability Assumptions SCA protection

Example: SCA on Falcon (→ FN-DSA)
In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk
itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

ffSampling

Figure 1: Flowchart of the signature
Learning sk directly

1FALCON Down: Breaking FALCON Post‐Quantum Signature Scheme through Side‐Channel Attacks [KA21]

Example: SCA on Falcon (→ FN-DSA)
In Falcon, a signature sig is distributed as a Gaussian.
The signing key sk should remain private.
The power consumption leaks information about the dot product ⟨sig, sk⟩, or sk
itself.

Sign

HashToPoint ffSampling Compress

SHAKE SamplerZ

BaseSampler BerExp

ApproxExp

SamplerZ

Figure 1: Flowchart of the signature
Filtering ⟨sig, sk⟩ > 0

2Improved Power Analysis Attacks on Falcon [ZLYW23]

Masking Dilithium: what to expect

Dilithium‐Sign
1 Sample y← Uniform(S)
2 w := A · y
3 w0,w1 := Decompose(w)

4 c := H(w1,msg)
5 z := y+ s1 · c
6 r̃ := w0 − s0 · c
7 If ∥z∥∞ or ∥r̃∥∞ are too large,
goto 1

8 h := w1 − ⌊A · z− t · c⌉k
9 Output sig = (c, z,h)

Observations:
Some operations don’t need to be
masked (or conjectured to)
Some operations are linear and are
therefore easy to mask
Three operations require
mask conversions (overhead: O(d2 log q)) :

1 Sampling
3 Decomposition
6 Rejection sampling

Masked Dilithium [CGTZ23] - only fast ops

Dilithium‐Sign
1 Sample y← S
2 w := A · y ▷ Õ(d)
3 w0,w1 := Decompose(w)

4 c := H(w1,msg) ▷ No mask
5 z := y+ s1 c ▷ Õ(d)
6 r̃ := w0 − s0 · c ▷ Õ(d)
7 If ∥z∥∞ or ∥r̃∥∞ are too large, goto 1

▷ O(d2 log q)

8 h := w1 − ⌊A · z− t · c⌉k ▷ No mask
9 Output sig = (c, z,h)

2 4 8 12
0

0.01

Number of shares d

Speed (billions of cycles)

NTT
Ay
z
h

Masked Dilithium [CGTZ23] - round & reject

Dilithium‐Sign
1 Sample y← S
2 w := A · y ▷ Õ(d)
3 w0,w1 := Decompose(w) ▷ O(d2 log q)
4 c := H(w1,msg) ▷ No mask
5 z := y+ s1 c ▷ Õ(d)
6 r̃ := w0 − s0 · c ▷ Õ(d)
7 If ∥z∥∞ or ∥r̃∥∞ are too large, goto 1

▷ O(d2 log q)
8 h := w1 − ⌊A · z− t · c⌉k ▷ No mask
9 Output sig = (c, z,h)

2 4 8 12
0

1

Number of shares d

Speed (billions of cycles)

NTT
Ay
z
h

Decompose
Reject

Masked Dilithium [CGTZ23] - sampling

Dilithium‐Sign
1 Sample y← S ▷ O(d2 log q)
2 w := A · y ▷ Õ(d)
3 w0,w1 := Decompose(w) ▷ O(d2 log q)
4 c := H(w1,msg) ▷ No mask
5 z := y+ s1 c ▷ Õ(d)
6 r̃ := w0 − s0 · c ▷ Õ(d)
7 If ∥z∥∞ or ∥r̃∥∞ are too large, goto 1

▷ O(d2 log q)
8 h := w1 − ⌊A · z− t · c⌉k ▷ No mask
9 Output sig = (c, z,h)

2 4 8 12
0

Number of shares d

Speed (billions of cycles)

NTT
Ay
z
h

Decompose
Reject
Sample
Total

Raccoon

Raccoon = Schnorr over lattices
Raccoon.Keygen()→ sk, vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg, sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Schnorr.Keygen()→ sk, vk
1 vk = gsk, for sk uniform.

Schnorr.Sign(sk,msg)→ sig
1 Sample r
2 w = gr

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Schnorr.Verify(vk,msg, sig)
1 w′ = gz · vk−c
2 Assert H(w′,msg) = c

Security of Raccoon
Raccoon.Keygen()→ sk, vk
1 vk =

[
A 1

]
· sk, for sk short.

Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Raccoon.Verify(vk,msg, sig)
1 w′ =

[
A 1

]
· z− c · vk

2 Assert H(w′,msg) = c
3 Assert z is short

Security: Raccoon is EUF‐CMA assuming:
1 Hint‐MLWE [KLSS23] (next slide)

Implied by lack of rejection sampling
Ensures uniformity of the public key

2 Self‐target MSIS [KLS18]
Unforgeability

Rounding: we can round vk and w:
Reduces the size of vk and sig
Zero impact on Hint‐MLWE
Minor impact on unforgeability
Not a sensitive information

Will not need to be masked

Hint-MLWE?

(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{

(A,b)|A←Rk×ℓ
q , sk← χsk,b :=

[
A I

]
· sk
}

{
(A,b)|A←Rk×ℓ

q , sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:
(ci, zi ← ci · sk + ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk +

∑
i
c∗i · ri

≈ Q · ω · sk +O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If s and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

Hint-MLWE?

(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{

(A,b)|A←Rk×ℓ
q , sk← χsk,b :=

[
A I

]
· sk
}

{
(A,b)|A←Rk×ℓ

q , sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:
(ci, zi ← ci · sk + ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk +

∑
i
c∗i · ri

≈ Q · ω · sk +O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If s and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

Hint-MLWE?

(Hint‐)MLWE [KLSS23]
It is difficult to distinguish both distributions:{

(A,b)|A←Rk×ℓ
q , sk← χsk,b :=

[
A I

]
· sk
}

{
(A,b)|A←Rk×ℓ

q , sk← χsk,b←Rkq
}

In Hint‐MLWE, the adversary is additionally
given Q “hints” of the shape:
(ci, zi ← ci · sk + ri), where ci ← C, ri ← χr

Attack on Hint‐MLWE
Assume ∀i ∈ [Q], ∥ci∥2 = ω. If we note
c∗(x) = c(x−1), we can recover sk by
constructing this accumulator:

acc =
∑

i
c∗i · zi

=
∑

i
c∗i ci · sk +

∑
i
c∗i · ri

≈ Q · ω · sk +O(
√
Q · ω · ∥r∥)

If ∥r∥ = o(
√
Q · ω), rounding acc to the

closest multiple of Q · ω gives sk.

Security reduction, simplified [KLSS23, DKM+24]
If s and ri are sampled from gaussians of standard deviation σsk and σr, then:

Hint‐MLWERq,k,ℓ,σsk,σr,Q ≥MLWERq,k,ℓ,σ0 , where
1
σ20
≈ 2

(
1
σ2sk

+
Q · ω
σ2r

)
(1)

From unmasked to masked Raccoon
Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

Starting point is “Schnorr over lattices”:
No Rejection sampling
Steps 2 and 4 are easy to mask
Steps 3 does not need to be masked
(no conjecture!)
What about Sampling (step 1)?

MaskSign(JskK, vk,msg)→ sig
1 JrK = J0K
2 For i ∈ [rep]:

1 JriK = (ri,1, . . . , ri,d)← χdr
2 JrK = JrK + JriK
3 Refresh(JrK)

3 JwK = [A I
]
· JrK

4 Refresh(JwK)
5 w = Decode(JwK)
6 c = H(w,msg, vk)
7 JzK = JskK · c+ JrK
8 Refresh(JzK, JskK)
9 z = Decode(JzK)
10 Output sig = (c, z)

From unmasked to masked Raccoon
Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

MaskSign(JskK, vk,msg)→ sig
1 JrK = J0K
2 For i ∈ [rep]:

1 JriK = (ri,1, . . . , ri,d)← χdr
2 JrK = JrK + JriK
3 Refresh(JrK)

3 JwK = [A I
]
· JrK

4 Refresh(JwK)
5 w = Decode(JwK)
6 c = H(w,msg, vk)
7 JzK = JskK · c+ JrK
8 Refresh(JzK, JskK)
9 z = Decode(JzK)
10 Output sig = (c, z)

From unmasked to masked Raccoon
Raccoon.Sign(sk,msg)→ sig
1 Sample a short r
2 w =

[
A 1

]
· r

3 c = H(w,msg)
4 z = r+ c · sk
5 Output sig = (c, z)

We note JxK a d‐sharing of x.
AddRepNoise in lime green

A t‐probing adversary learns at
most t of the (d · rep) values ri,j
Formal analysis in [EEN+24]

Refresh is useful for:
Concrete security
Composing gadgets (SNI)
Moving probes around (SNI)

All operations take time O(d log d).

MaskSign(JskK, vk,msg)→ sig
1 JrK = J0K
2 For i ∈ [rep]:

1 JriK = (ri,1, . . . , ri,d)← χdr
2 JrK = JrK + JriK
3 Refresh(JrK)

3 JwK = [A I
]
· JrK

4 Refresh(JwK)
5 w = Decode(JwK)
6 c = H(w,msg, vk)
7 JzK = JskK · c+ JrK
8 Refresh(JzK, JskK)
9 z = Decode(JzK)
10 Output sig = (c, z)

What happens inside AddRepNoise?

Without Refresh, a probing adversary could learn the sum of T random in 2 probes.

A d‐sharing of 0 A d‐sharing of r =
∑
i,j ri,j

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

What happens inside AddRepNoise?

Without Refresh, a probing adversary could learn the sum of T random in 2 probes.

A d‐sharing of 0 A d‐sharing of r =
∑
i,j ri,jSolution: add refresh gadgets to separate the algorithm in independent layers

Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

What happens inside AddRepNoise?

Without Refresh, a probing adversary could learn the sum of T random in 2 probes.A d‐sharing of 0 A d‐sharing of r =
∑
i,j ri,j

Solution: add refresh gadgets to separate the algorithm in independent layers
Now a probing adversary learns at most (the sum of) t short noises.

+r1,1 +r1,2 +r1,3 +r1,4

+r2,1 +r2,2 +r2,3 +r2,4

+r3,1 +r3,2 +r3,3 +r3,4

+r4,1 +r4,2 +r4,3 +r4,4

Security proof outline [dPKPR24] (simplified)

t‐probing
EUF‐CMA Game 1 Game 2

Game 3
(EUFCMA)

SelfTargetMSIS
+ (Hint‐)MLWE

MaskKeygen
MaskSign

Verify

MaskKeygenER
MaskSignER

Verify

MaskKeygenLeak
MaskSignLeak

Verify

Keygen
Sign

Verify

1 Rewriting
2 Only probe
AddRepNoise 3 Linearity 4 Final hop

O O O O

1 Rewriting: make randomness explicit as input
2 SNI(u) property: move all probes to AddRepNoise randomness
3 Linearity: we argue that we can can simulate Game 2 from Game 3

Game 2: w =
[
A I

]
· r where r =

∑
i∈[d·rep] ri and we leak (ri)i∈S for |S| = t

Game 3: w =
[
A I

]
· r′ where r′ =

∑
i∈[d·rep−t] ri

4 Final hop: {EUFCMA of Raccoon} ≥ {SelfTargetMSIS + (Hint‐)MLWE }

Security proof outline [dPKPR24] (simplified)

t‐probing
EUF‐CMA Game 1 Game 2

Game 3
(EUFCMA)

SelfTargetMSIS
+ (Hint‐)MLWE

MaskKeygen
MaskSign

Verify

MaskKeygenER
MaskSignER

Verify

MaskKeygenLeak
MaskSignLeak

Verify

Keygen
Sign

Verify

1 Rewriting

2 Only probe
AddRepNoise 3 Linearity 4 Final hop

O O O O

1 Rewriting: make randomness explicit as input

2 SNI(u) property: move all probes to AddRepNoise randomness
3 Linearity: we argue that we can can simulate Game 2 from Game 3

Game 2: w =
[
A I

]
· r where r =

∑
i∈[d·rep] ri and we leak (ri)i∈S for |S| = t

Game 3: w =
[
A I

]
· r′ where r′ =

∑
i∈[d·rep−t] ri

4 Final hop: {EUFCMA of Raccoon} ≥ {SelfTargetMSIS + (Hint‐)MLWE }

Security proof outline [dPKPR24] (simplified)

t‐probing
EUF‐CMA Game 1 Game 2

Game 3
(EUFCMA)

SelfTargetMSIS
+ (Hint‐)MLWE

MaskKeygen
MaskSign

Verify

MaskKeygenER
MaskSignER

Verify

MaskKeygenLeak
MaskSignLeak

Verify

Keygen
Sign

Verify

1 Rewriting
2 Only probe
AddRepNoise

3 Linearity 4 Final hop

O O O O

1 Rewriting: make randomness explicit as input
2 SNI(u) property: move all probes to AddRepNoise randomness

3 Linearity: we argue that we can can simulate Game 2 from Game 3
Game 2: w =

[
A I

]
· r where r =

∑
i∈[d·rep] ri and we leak (ri)i∈S for |S| = t

Game 3: w =
[
A I

]
· r′ where r′ =

∑
i∈[d·rep−t] ri

4 Final hop: {EUFCMA of Raccoon} ≥ {SelfTargetMSIS + (Hint‐)MLWE }

Security proof outline [dPKPR24] (simplified)

t‐probing
EUF‐CMA Game 1 Game 2

Game 3
(EUFCMA)

SelfTargetMSIS
+ (Hint‐)MLWE

MaskKeygen
MaskSign

Verify

MaskKeygenER
MaskSignER

Verify

MaskKeygenLeak
MaskSignLeak

Verify

Keygen
Sign

Verify

1 Rewriting
2 Only probe
AddRepNoise 3 Linearity

4 Final hop

O O O O

1 Rewriting: make randomness explicit as input
2 SNI(u) property: move all probes to AddRepNoise randomness
3 Linearity: we argue that we can can simulate Game 2 from Game 3

Game 2: w =
[
A I

]
· r where r =

∑
i∈[d·rep] ri and we leak (ri)i∈S for |S| = t

Game 3: w =
[
A I

]
· r′ where r′ =

∑
i∈[d·rep−t] ri

4 Final hop: {EUFCMA of Raccoon} ≥ {SelfTargetMSIS + (Hint‐)MLWE }

Security proof outline [dPKPR24] (simplified)

t‐probing
EUF‐CMA Game 1 Game 2

Game 3
(EUFCMA)

SelfTargetMSIS
+ (Hint‐)MLWE

MaskKeygen
MaskSign

Verify

MaskKeygenER
MaskSignER

Verify

MaskKeygenLeak
MaskSignLeak

Verify

Keygen
Sign

Verify

1 Rewriting
2 Only probe
AddRepNoise 3 Linearity 4 Final hop

O O O O

1 Rewriting: make randomness explicit as input
2 SNI(u) property: move all probes to AddRepNoise randomness
3 Linearity: we argue that we can can simulate Game 2 from Game 3

Game 2: w =
[
A I

]
· r where r =

∑
i∈[d·rep] ri and we leak (ri)i∈S for |S| = t

Game 3: w =
[
A I

]
· r′ where r′ =

∑
i∈[d·rep−t] ri

4 Final hop: {EUFCMA of Raccoon} ≥ {SelfTargetMSIS + (Hint‐)MLWE }

Parameter selection and the modulus q.
Signature sizes are quadratic in log q (trust me), so we want to minimize q.

Method Modulus q (logarithmic view)

ML‐DSA σ(sk) ∥c∥1 · dim(sk) Ω(1)

MLWE Rejection sampling

σ(sig) MSIS (forgery)

Raccoon,
Smooth Rényi
[Proven]

σ(sk) ∥c∥
√
Qs · dim(sk) · λ · d3

√
2 Ω(1)

MLWE (key rec.) Smooth Rényi divergence Probing

σ(sig) MSIS (forgery)

Raccoon,
Hint‐MLWE
[Heuristic]

σ(sk) ∥c∥
√
Qs

√
2 Ω(1)

MLWE Hint‐MLWE reduction (heur.) Probing

σ(sig) MSIS

ML‐DSA: q = 23 bits, |sig| = 2420 bytes
Raccoon: q = 49 bits, |sig| = 11524 bytes

Parameter selection and the modulus q.
Signature sizes are quadratic in log q (trust me), so we want to minimize q.

Method Modulus q (logarithmic view)

ML‐DSA σ(sk) ∥c∥1 · dim(sk) Ω(1)

MLWE Rejection sampling

σ(sig) MSIS (forgery)

Raccoon,
Smooth Rényi
[Proven]

σ(sk) ∥c∥
√
Qs · dim(sk) · λ · d3

√
2 Ω(1)

MLWE (key rec.) Smooth Rényi divergence Probing

σ(sig) MSIS (forgery)

Raccoon,
Hint‐MLWE
[Heuristic]

σ(sk) ∥c∥
√
Qs

√
2 Ω(1)

MLWE Hint‐MLWE reduction (heur.) Probing

σ(sig) MSIS

ML‐DSA: q = 23 bits, |sig| = 2420 bytes
Raccoon: q = 49 bits, |sig| = 11524 bytes

Performances on a Desktop

1 2 4 8 12 16 32
0

20

40

60

80

100

Number of shares d

Speed (ms)

Dilithium
Raccoon

Mask Compre≦ion

Reality check

Right now, we need to implement ML‐DSA

Challenges in implementing ML-DSA

Disclaimer: I am not involved in any of the works/techniques in this section.
I just think they’re neat.

Implementing Dilithium/ML‐DSA in RAM‐constrained devices
Reference implementation has a footprint ≥ 50 KiB
Using several tricks, [BRS22] compress it down to ≤ 7 KiB

Implementing high‐order masked Dilithium/ML‐DSA
Feasible with O(d2 log q) overhead [CGTZ23, CGL+24]

Implementing high‐order masked Dilithium/ML‐DSA in RAM‐constrained
devices?

What is costly to store in ML-DSA?

Consider ML‐DSA‐87:

One ring element 768 B

Secret key (s1, s2) 3,840 B

Randomness y 4,480 B

Commitment w 5,888 B

Fully expanded matrix A 41,216 B

... ...

Solutions:
(Re‐)generate everything from seeds (A, s1, s2, y, ...)
Memory laziness (throw away values after usage)

Is it any different with masking?

Masked sensitive values are expensive to store. At order 4:JyK: between 17, 920 B and 20,608 BJs1K, Js2K: between 8, 192 B and 44,160 B
Makes it impractical to implement ML‐DSA‐87 on devices with ≤ 32 KiB of RAM.

Is there a chance we can use seeds to reduce storage?

Mask compression
Markku‐Juhani O. Saarinen, Mélissa Rossi: Mask Compression: High‐Order
Masking on Memory‐Constrained Devices. SAC 2023. [SR24]

Mask Compression

Key idea: make all shares (except one) pseudorandom:JxKd = (x0, seed1, . . . , seedi)
x0 = x−

∑
i>0 PRF(seedi)

Security (in isolation): x remains secret even if t < d values are probed

Efficiency: Decrease the bitsize from d · |x| down to |x|+ (d− 1) · λ.
If x has k coefficients, we may either:

Use one seed per coef⇒ bitsize becomes |x|+ (d− 1) · k · λ
Use different PRFs⇒ the j‐th coef of the i‐th share would be PRFj(seedi)

Computations?
[SR24] show how to perform a SNI refresh (compatible w/ this structure)
Other ML‐DSA operations (decompose, addition, rejection) may require all
shares at once→ see efficiency trade‐offs

This allows to implement ML‐DSA‐87 with 4 shares and 16 KiB of RAM.

Mask compression
Markku‐Juhani O. Saarinen, Mélissa Rossi: Mask Compression: High‐Order
Masking on Memory‐Constrained Devices. SAC 2023. [SR24]

Mask Compression

Key idea: make all shares (except one) pseudorandom:JxKd = (x0, seed1, . . . , seedi)
x0 = x−

∑
i>0 PRF(seedi)

Security (in isolation): x remains secret even if t < d values are probed
Efficiency: Decrease the bitsize from d · |x| down to |x|+ (d− 1) · λ.
If x has k coefficients, we may either:

Use one seed per coef⇒ bitsize becomes |x|+ (d− 1) · k · λ
Use different PRFs⇒ the j‐th coef of the i‐th share would be PRFj(seedi)

Computations?
[SR24] show how to perform a SNI refresh (compatible w/ this structure)
Other ML‐DSA operations (decompose, addition, rejection) may require all
shares at once→ see efficiency trade‐offs

This allows to implement ML‐DSA‐87 with 4 shares and 16 KiB of RAM.

Mask compression
Markku‐Juhani O. Saarinen, Mélissa Rossi: Mask Compression: High‐Order
Masking on Memory‐Constrained Devices. SAC 2023. [SR24]

Mask Compression

Key idea: make all shares (except one) pseudorandom:JxKd = (x0, seed1, . . . , seedi)
x0 = x−

∑
i>0 PRF(seedi)

Security (in isolation): x remains secret even if t < d values are probed
Efficiency: Decrease the bitsize from d · |x| down to |x|+ (d− 1) · λ.
If x has k coefficients, we may either:

Use one seed per coef⇒ bitsize becomes |x|+ (d− 1) · k · λ
Use different PRFs⇒ the j‐th coef of the i‐th share would be PRFj(seedi)

Computations?
[SR24] show how to perform a SNI refresh (compatible w/ this structure)
Other ML‐DSA operations (decompose, addition, rejection) may require all
shares at once→ see efficiency trade‐offs

This allows to implement ML‐DSA‐87 with 4 shares and 16 KiB of RAM.

Mask compression
Markku‐Juhani O. Saarinen, Mélissa Rossi: Mask Compression: High‐Order
Masking on Memory‐Constrained Devices. SAC 2023. [SR24]

Mask Compression

Key idea: make all shares (except one) pseudorandom:JxKd = (x0, seed1, . . . , seedi)
x0 = x−

∑
i>0 PRF(seedi)

Security (in isolation): x remains secret even if t < d values are probed
Efficiency: Decrease the bitsize from d · |x| down to |x|+ (d− 1) · λ.
If x has k coefficients, we may either:

Use one seed per coef⇒ bitsize becomes |x|+ (d− 1) · k · λ
Use different PRFs⇒ the j‐th coef of the i‐th share would be PRFj(seedi)

Computations?
[SR24] show how to perform a SNI refresh (compatible w/ this structure)
Other ML‐DSA operations (decompose, addition, rejection) may require all
shares at once→ see efficiency trade‐offs

This allows to implement ML‐DSA‐87 with 4 shares and 16 KiB of RAM.

Conclusion

Conclusion

Masking‐friendly lattice schemes
Requires flexibility in exploration of design space and security notions

Can be extremely efficient

Concrete SCA resilience?

Better proofs/constructions in alternative leakage models?

Masking‐friendly KEMs?

Lattice‐friendly masking schemes
We have barely scratched the surface

What would be really nice is a masking scheme that:
> Can be converted efficiently from/to arithmetic masking

> Allows to perform efficiently decompose/sample/reject

Questions?
https://raccoonfamily.org
https://ia.cr/2024/1291
https://ia.cr/2023/1117
https://tprest.github.io

https://raccoonfamily.org
https://ia.cr/2024/1291
https://ia.cr/2023/1117
https://tprest.github.io

Joppe W. Bos, Joost Renes, and Amber Sprenkels.
Dilithium for memory constrained devices.
In Lejla Batina and Joan Daemen, editors, AFRICACRYPT 22, volume 2022 of
LNCS, pages 217–235. Springer, Cham, July 2022.

Jean‐Sébastien Coron, François Gérard, Tancrède Lepoint, Matthias Trannoy,
and Rina Zeitoun.
Improved high‐order masked generation of masking vector and rejection
sampling in dilithium.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2024(4):335–354, Sep. 2024.

Jean‐Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high‐order masking of Dilithium.
IACR TCHES, 2023(4):110–145, 2023.

Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas
Prest, and Markku‐Juhani O. Saarinen.
Threshold raccoon: Practical threshold signatures from standard lattice
assumptions.

In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume
14652 of LNCS, pages 219–248. Springer, Cham, May 2024.

Rafaël del Pino, Shuichi Katsumata, Thomas Prest, and Mélissa Rossi.
Raccoon: A masking‐friendly signature proven in the probing model.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume
14920 of LNCS, pages 409–444. Springer, Cham, August 2024.

Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin
Sakzad, and Ron Steinfeld.
Plover: Masking‐friendly hash‐and‐sign lattice signatures.
In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VII, volume
14657 of LNCS, pages 316–345. Springer, Cham, May 2024.

Emre Karabulut and Aydin Aysu.
FALCON down: Breaking FALCON post‐quantum signature scheme through
side‐channel attacks.
In 58th ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA,
USA, December 5‐9, 2021, pages 691–696. IEEE, 2021.

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner.

A concrete treatment of Fiat‐Shamir signatures in the quantum random‐oracle
model.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 552–586. Springer, Cham, April / May 2018.

Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Toward practical lattice‐based proof of knowledge from hint‐MLWE.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V,
volume 14085 of LNCS, pages 549–580. Springer, Cham, August 2023.

Markku‐Juhani O. Saarinen and Mélissa Rossi.
Mask compression: High‐order masking on memory‐constrained devices.
In Claude Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors, SAC 2023,
volume 14201 of LNCS, pages 65–81. Springer, Cham, August 2024.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang.
Improved power analysis attacks on falcon.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part IV, volume
14007 of LNCS, pages 565–595. Springer, Cham, April 2023.

	Why this Talk?
	Lattice Schemes & Masking
	Raccoon
	Mask Compression
	Conclusion

