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Abstract In the last decade, several works have focused on finding the
best way to model the leakage in order to obtain provably secure imple-
mentations. One of the most realistic models is the noisy leakage model,
introduced in [PR13,DDF14] together with secure constructions. These
works suffer from various limitations, in particular the use of ideal leak-
free gates in [PR13] and an important loss (in the size of the field) in the
reduction in [DDF14].
In this work, we provide new strategies to prove the security of masked
implementations and start by unifying the different noisiness metrics
used in prior works by relating all of them to a standard notion in infor-
mation theory: the pointwise mutual information. Based on this new in-
terpretation, we define two new natural metrics and analyze the security
of known compilers with respect to these metrics. In particular, we prove
(1) a tighter bound for reducing the noisy leakage models to the probing
model using our first new metric, (2) better bounds for amplification-
based security proofs using the second metric.
To support that the improvements we obtain are not only a consequence
of the use of alternative metrics, we show that for concrete representation
of leakage (e.g., “Hamming weight + Gaussian noise”), our approach
significantly improves the parameters compared to prior works. Finally,
using the Rényi divergence, we quantify concretely the advantage of an
adversary in attacking a block cipher depending on the number of leakage
acquisitions available to it.

1 Introduction

In modern cryptography, it is common to prove the security of a construction
by relying on the security of its underlying building blocks or on the hardness
of standard computational problems. This approach has allowed the community
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to propose a wide variety of cryptographic primitives based on only a limited
number of different assumptions (e.g., factoring, learning parity with noise, ex-
istence of one-way functions, security of AES or SHA-3, etc). Unfortunately,
there is still a significant gap between the ideal security models that are used
in provable security, and the actual environments in which these cryptosystems
are deployed. Notably, standard security models usually assume that attackers
have only a black-box access to the cryptosystem: attackers do not have any
information beyond the input/output behavior.

Yet, it is well known that this is generally not true in practice. These cryp-
tosystems are run by physical devices, hence an adversary might be able to
learn partial information such as the running-time, the power consumption, the
electromagnetic emanation, or several other physical measures of the device.
As revealed by Kocher et al. in [Koc96,KJJ99], these additional information,
referred to as the leakage of the computation, are valuable and can be used
to mount side-channel attacks against cryptographic implementations. Hence,
a cryptosystem that is proven secure in an ideal security model can become
completely vulnerable when deployed in the real-world.

Due to the fundamental importance of secure implementations of crypto-
graphic primitives, constructing leakage-resilient cryptography has become a
major area of research. Many empirical countermeasures have been proposed
over the last decades and an important line of works has aimed at formalizing
the notion of leakage towards obtaining provably secure implementations.

The presence of leakage in the real-world has been formalized by introduc-
ing new security models in which the attacker can obtain additional informa-
tion about the computation. In a seminal work from 2003 by Ishai, Sahai, and
Wagner [ISW03], the authors introduced the d-probing (or d-threshold probing)
model, in which an attacker can learn a bounded number d of intermediate re-
sults (i.e. wire values, also called probes) of a computation C. A circuit is then
secure in this model if any subset of at most d probes does not reveal any infor-
mation about the inputs of the computation. That is, the distribution of values
obtained by probing should be independent of the inputs of the computation.
While this model is ideal and does not fully catch the behavior of a device in the
real-world (e.g., physical leakages reveal information about the whole computa-
tion), it is simple enough to get efficient compilers that transform any circuit
into a secure one in the d-probing model, as shown in [ISW03]. They built se-
cure addition and multiplication in the d-probing model based on secret-sharing
techniques1 and immunize any arithmetic circuit by replacing every gate by its
secure variant. This transformation blows up the size of the circuit by a factor
O(d2). A different and more realistic model was proposed by Micali and Reyzin
in 2004 [MR04]. They defined a model of cryptography in presence of arbitrary
forms of leakage about the whole computation. The above two works are corner-
stones of leakage-resilient cryptography. In particular, the assumption that only

1 Basically, their secure variants take as input additive shares of the input and produce
additive shares of the output. Their secure multiplication that operates on additive
shares is often referred to as the ISW-multiplication.
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computation leaks information (thus a program can still hide some secrets) orig-
inated in these works. Following the path of [MR04], Dziembowski and Pietrzak
proposed in 2008 a simplified model for leakage-resilient cryptography in [DP08].
In this model, any elementary operation on some input x leaks a partial infor-
mation about x, modeled as the evaluation f(x) of a leakage function whose
range is bounded, so an adversary is given access to the leakage f(x) for every
intermediate result x of the evaluation of C. Unfortunately, this model has a
drawback: the range of the leakage function is bounded and fairly small (e.g.,
128-bit strings) compared to the actual amount of information that can be ob-
tained from a device (e.g., a power trace on an AES computation can contain
several megabytes of information).

To circumvent this limitation, Prouff and Rivain proposed in [PR13] a more
realistic leakage model, called the noisy leakage model. The authors modified the
above definition of leakage by making an additional but realistic assumption: the
information f(x) leaked by an elementary operation on some input x is noisy.
Specifically, the authors assumed that f is a randomized function such that
the leakage f(x) only implies a bounded bias in the distribution of x, which is
formally defined as distributions X and X|f(X) being close (up to some fixed
bound δ), where X denotes the distribution of x. The authors measured closeness
with the Euclidean Norm (denoted EN) between the distributions (over finite
sets) and propose solutions to immunize symmetric primitives in this model.
Their model is inspired by the seminal work of Chari et al. [CJRR99] that
considered the leakage as inherently noisy and proved that using additive secret-
sharing (or masking) on a variable X decreases the information revealed by the
leakage by an exponential factor in the number of shares (or masking order).
This kind of proof is referred to as amplification-based, and Prouff and Rivain
extended it to a whole block cipher evaluation.

A drawback of this model is the difficulty to design proofs. In addition,
the constructions in [PR13] rely on a fairly strong assumption: the existence of
leak-free refresh gates (i.e. gates that do not leak any information and refresh
additive shares of x)2. Both limitations were solved by Duc, Dziembowski, and
Faust in [DDF14]. In the latter work, using the statistical distance (denoted SD)
instead of the Euclidean norm as measure of closeness, the authors showed that
constructions proven secure in the ideal d-probing model of Ishai et al. are also
secure in the δ-noisy leakage model, provided d is large enough (function of δ).
As a consequence, the simple compilers for building d-probing secure circuits
can serve for achieving security in the noisy leakage model, proving a conjecture
broadly admitted for several years based on empirical observations.

The present work extends the two above results and proposes general solu-
tions to immunize cryptographic primitives in the noisy leakage model. We start
by giving a more formal overview of these two works.

2 In practice, refresh gates are often implemented via an ISW-multiplication with
additive shares of 1 (e.g., shares (1,0,. . . ,0)).
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1.1 Previous Works

As explained above, two distinct approaches for immunizing cryptosystems in the
noisy leakage model have been considered: (1) a direct approach, used in [PR13],
that proves the security of a construction directly in the model via noise amplifi-
cation, and (2) an indirect approach, used in [DDF14], that consists in reducing
security in the noisy leakage model to security in ideal models (e.g., the probing
model) and then applying compilers for the latter models.

A direct approach. In [PR13], the authors propose a way to immunize block
ciphers of a particular form (succession of linear functions and substitution boxes,
a.k.a. s-boxes, e.g., AES). Their approach consists in replacing elementary op-
erations of such block ciphers by subprotocols that operate on masked inputs
and produce a masked output. They bound the leakage on each subprotocol and
as a consequence are able to bound the leakage of a single evaluation of the
masked block cipher (i.e. the block cipher obtained by replacing every elemen-
tary operation by the corresponding subprotocol and applying leak-free refresh
gates between each subprotocol). They conclude by proving an upper bound
on the information (in an information-theoretic sense) revealed by the leakage
about the input (plaintext/key) from evaluations of the masked block cipher, in
particular proving that it decreases exponentially in the masking order.

While this paper makes great progress towards constructing provably-secure
leakage-resilient block ciphers, it suffers from a few limitations. First, as already
mentioned, the security proof relies on leak-free refresh gates. Second, the fact
that the final analysis relies on the mutual information implies a rather paradoxal
situation: from an information theory perspective, a single pair of plaintext-
ciphertext can reveal the key. To get around this problem, the authors assume
that both the plaintext and the ciphertext are secret, which is fairly unrealistic
compared to standard security models for block ciphers. Finally, to offer strong
security guarantees, the mutual information should be upper bounded by 2−O(λ),
with λ being the security parameter. Hence, the masking order for reaching this
bound only depends on λ, which is independent of the number of queries (and
therefore the amount of leakage) the adversary makes.

An indirect approach. In [DDF14], the authors propose an elegant approach
that applies to any form of computation. Their main result proves that any
information obtained in the δ-noisy leakage model (so information of the form
f(x) for any intermediate result x of the computation) can be simulated from a
sufficiently large number d of probes. As such a set of probes does not carry any
information about the inputs if the circuit is secure in the (d+1)-probing model,
this guarantees that the information obtained in the δ-noisy leakage model does
not carry any useful information either. Hence, using standard compilers to se-
cure a cryptosystem in the (d+1)-probing model makes it secure when deployed
in the real-world, assuming the leakage is δ-noisy. Unfortunately, this reduction
incurs an important blow-up in the parameters (δ → d). Notably d has to be at
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least N times larger than δ to guarantee security, where N is the size of the field
on which the circuit operates. This loss appears in an intermediate step of their
reduction when first reducing the noisy leakage model to the random probing
model3. Typically, for AES, we have N = 256, so the required order d of security
is very large (and so is the size of the masked circuit since applying the ISW
compiler increases the size by a factor d2).

This loss is seemingly an artifact of the reduction and has not been observed
in empirical measures [DFS15a]. A first attempt to circumvent this issue was
made in [DFS15b] by introducing a new model, called the average random prob-
ing model, which is a tweak of the random probing model. The authors prove
a tight equivalence between the noisy leakage and the average random probing
models and show that the ISW compiler is secure in their model.

Yet, there are two caveats. First, their proof of security of the ISW compiler
introduce leak-free gates, whereas [DDF14] does not. Second, [DFS15b] does not
establish a reduction from the average random probing to the threshold probing
model, hence leaving open the question of improving the reductions provided
in [DDF14]. In this paper, we overcome these two issues and provide a tight
reduction from a4 noisy leakage model to the threshold probing model without
leak-free gates nor a loss in the size of the field.

1.2 Our Contributions

We extend the previous studies of leakage-resilient cryptography in several di-
rections. Our approach starts by relating the noisiness of a leakage to a standard
notion in information theory: the pointwise mutual information (PMI).

From pointwise mutual information to noisiness metrics. Our first ob-
servation is that the two metrics used in prior works to measure the distance
between X and X|f(X), namely the Euclidean norm (EN) and the statistical
distance (SD), can be easily expressed as different averages of the pointwise mu-
tual information of the same distributions. Given this interpretation, it is easy
to see that these two measures are average-case metrics of noisiness.

We investigate the benefits of considering the problem of building leakage-
resilient cryptography based on two other worst-case metrics that naturally fol-
low from the pointwise mutual information: the Average Relative Error (ARE)
and the Relative Error (RE). Using these two metrics, we propose tighter proofs
for immunizing cryptosystems in the noisy leakage model. We emphasize that

3 In the ε-random probing model, the adversary learns each exact wire value with
probability ε (and nothing about it with probability 1− ε).

4 Noisy-leakage models are inherently associated to the metric used to measure nois-
iness. [PR13] is based on the Euclidean norm, [DDF14] on the statistical distance.
We introduce new metrics, therefore new models. Yet, the overall result remain com-
parable as only the noisiness of the leakage is impacted by the metric, but not the
leakage itself, so the metric is just a tool to argue the security (security against the
leakage being independent of the metric).
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even though we introduce new metrics (and therefore new noisy leakage mod-
els), our goal remains to prove that we can simulate perfectly the leakage (which
depends on the intermediate values but does not depend on the metric) from
a certain amount of probes. The metric only plays a role in determining the
amount of probes that is needed for simulating the leakage, i.e. the sufficient
masking order to immunize the computation, but does not play any role in mea-
suring the quality of the simulation (which remains perfect). We are able (in
general) to prove better bounds for the amount of probes needed for the simu-
lation. In particular, combining our results with known compilers is particularly
interesting for typical forms of concrete leakage such as the “Hamming weight
+ Gaussian noise” model.

A tighter reduction from noisy leakage to random probing. We propose
a reduction from the noisy leakage model to the random probing model, when
the noise is measured with the ARE metric. Our reduction is analogous to
the reduction proposed from [DDF14]. Once reduced to the random probing
model, it is easy to go to the threshold probing model by a simple probabilistic
argument (observed in [DDF14]). Using the ARE metric, we are able to reduce
the δ-noisy leakage model (where the noise is measured with the ARE metric)
to the δ-random probing model (instead of the δ · N -random probing model
for prior work using the SD metric). Again, we emphasize that, despite using
different metrics, these reductions allows to simulate the exact distribution of
the leakage, which is completely independent of the underlying metric.

This tighter reduction has immediate, tangible consequences when consider-
ing compilers which are proven secure in the threshold probing model [ISW03]
or in the random probing model [ADF16,GJR17,AIS18]: for a specific form of
noisy leakage, as long as the ARE-noisiness is smaller than N times than the SD-
noisiness, our reduction guarantees security using a smaller masking order than
the reduction based on the SD metric. In particular, we show for the concrete
“Hamming weight + Gaussian noise” model of leakage that our result reduces
the required masking order by a factor O(N/

√
logN) compared to [DDF14].

Actually, even though we do not start from the same metrics (and then from
the exact same noisy leakage model), we prove that the ARE-noisiness of any
function is upper bounded (up to a factor 2 ·N) by its SD-noisiness. Then, even
in the worst case, our reduction (which is tighter by a factor N) gives as good
results (up to a factor 2) as the reduction in [DDF14]. Reversely the SD-noisiness
is upper bounded by the ARE-noisiness (up to a factor 2), so the loss of a factor
N in the reduction is not compensated, which explains the large improvement
we gain from our approach in certain cases such as the aforementioned one.

As a side contribution, and perhaps surprisingly, we are also able to prove
a converse reduction: we show that the random probing model reduces to the
ARE-noisy leakage model (though it incurs a loss of a factor N−1). This follows
from observing that the random probing model is a special instance of the ARE-
noisy leakage model. This implies that the SD-noisy leakage, ARE-noisy leakage
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and (average) random probing models are all equivalent. We believe that this
result is of independent interest and could find applications in future works.

While we focus on using a compiler introduced in [ISW03], which has also
been studied in [PR13,DDF14,DFS15b], other compilers also benefit from our
work in obvious ways (e.g., the compilers described in [ADF16,GJR17,AIS18]
are secure in the random probing model, hence benefit from our reduction to
the noisy leakage model).

Our reductions and previously known reductions are summarized in Figure 1.
This diagram represents the interactions between various leakage models (from
very concrete ones, like “Hamming weight with Gaussian noise”, to theoretical
models such as the threshold probing model) and circuit compilers. The physical
noise model is displayed on the first line, noisy leakage models on the second
line, probing models on the third line, and circuit compilers are displayed on
the fourth line. Arrows from a model M to a compiler C means that C is proven
secure in the model M. An arrow from a model M1 to a model M2 means that
an adversary in M1 can be simulated in M2 with the overhead indicated next
to the arrow. Our contributions (models and reductions) are displayed in bold.
For the sake of clarity, constant factors are omitted. N denotes the size of the
underlying finite field, and λ denotes the security parameter of the scheme to
protect.

HW + Gaussian
noise N (0, σ)

RE-noisy leakage
[this work]

ARE-noisy leak-
age [this work]

SD-noisy
leakage [DDF14]

EN-noisy leakage
[PR13]

Threshold
probing [ISW03]

Random probing
[ISW03,DDF14]

Average ran-
dom probing

[DFS15b]

Compiler
from [ISW03]

Compilers from
[ADF16,GJR17,AIS18]

√
λ · logN logN

√
logN

√
log N

N

1

1

N
√
N

1

1N − 1 N 11Leak-free refresh

Leak-free refresh

Leak-free refresh

Figure 1: From concrete leakages to secure circuit compilers: an overview of
reduction-based proofs and our contributions.
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An amplification-based proof with the Rényi divergence. Our second
main contribution is a new amplification-based proof which improves over ex-
isting ones in some aspects. Once again, we put our result in perspective with
concrete noisy leakage models where the noise follows a Gaussian distribution
N (0, σ) with standard deviation σ, e.g., the “Hamming weight + Gaussian noise”
model. In the context of leakage-resilient cryptography, known amplification-
based proofs show that if σ is large enough, then the leakage of a masked circuit
decreases exponentially in the masking order; equivalently (and we will use this
perspective for convenience), it shows that the required amount of Gaussian
noise decreases when the masking order increases.

The most notable amplification-based proofs of masked circuits are due to
[PR13], which uses the EN-noisy leakage model, and [DFS15b], which uses the
average random probing model (or equivalently, the SD-noisy leakage model).
Both works yield a condition on σ, precisely they impose σ = Ω(d×f×g1/(d+1)),
where the functions f and g are constant in the masking order d. Here, f acts
like a factor of σ which is fixed (it does not depend of d), whereas g acts like a
compressible part whose impact on σ can be decreased by increasing the masking
order. Both terms are important, because f cannot be compressed, but g can
be very large in practice. Our new amplification-based proof relies on the RE-
noisiness, and can be seen as revisiting the proof of [PR13]. Compared to the
previous works, it provides several qualitative and quantitative gains:

– Whereas in the previous works, σ was exponential in the security level λ
(more precisely, larger than 2λ/(d+1)), in our case it is only proportional
to
√
λ; This is thanks to our use of the Rényi divergence, which allows to

replace 2λ/(d+1) by q1/(d+1), where q denotes the number of traces (i.e. the
number of evaluations with known leakage) obtained by the attacker. This
is a far lighter constraint, since in cryptography it is typical to take λ = 256,
whereas it is extremely rare to have more than 232 traces available.

– Our Rényi divergence-based proof shows that the view of a black-box ad-
versary is not significantly different from the view of an adversary which
has access to leakage, and we relate the distance between these two views to
the masking order and the number of traces available to the adversary (in
particular upper bounded by the number of queries).

– Compared to [DFS15b], our fixed part f is larger, but our compressible part
g is much smaller: for the above values of q and λ, g will be 232 in our case,
whereas it would be larger than 21024 in the case of [DFS15b]. In addition,
[DFS15b, Lemma 14 and Theorem 1] implicitly impose d to be linear in
λ+ logN , which gives an extremely high masking order. Our proof imposes
no such bound.

In Figure 1, amplification proofs correspond to Leak-Free Refresh arrows.
Finally, in Table 1, we compare our results with the state-of-the-art ap-

proaches in the case of Hamming weight + Gaussian noise for both reduction-
based proofs and amplification-based proofs. Our bound for the noisiness are
taken from Proposition 3. The conditions on the Gaussian noise level σ are
given, as well as additional conditions when they exist. LFR indicates whether
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Table 1: Comparison with prior works (combined with Proposition 3).

Work Condition on σ Other condition LFR Model Tool

[DDF14,
Thm 1]

Ω
(
dN
√

lnN
)

d = Ω(λ+ ln |Γ |) No CPA ∆SD

This work
(sec. 5)

Ω (d lnN) d = Ω(λ+ ln |Γ |) No CPA ∆SD

[PR13, Cor
2, Thm 4]

Ω
(
dN
√

lnN × (N32λ|Γ |)1/(d+1)
)
d = Ω(dN3/2

√
lnN) Yes RPA MI

[DFS15b,
Cor 4]

Ω
(
d
√

lnN ×
[
(Nd2λ)4|Γ |

]1/d)
d = Ω(λ+ ln(N |Γ |)) Yes CPA ∆SD

This work
(sec. 6)

Ω
(
d
√
λ lnN × (q|Γ |)1/(d+1)

)
- Yes CPA R∞

leak-free refresh gates are required in the security proof. Model states the model
of attacker (random-plaintext or chosen-plaintext). The model of attack is ac-
tually not considered in [DFS15b], but [DFS16, Lemma 2] shows that in the
case of [DFS15b], random plaintext attacks reduce to chosen plaintext attacks
and that it is therefore sufficient to consider only the former. Tool indicates the
main notion the security proof relies on (statistical distance, mutual informa-
tion or Rényi divergence of order infinity). λ denotes the security parameter of
the scheme, d the masking order, N the size of the underlying field, and q the
number of traces available to an attacker.

Organization of the paper. The remainder of the paper is organized as fol-
lows. Section 2 presents some theoretical background and notation. Section 3
provides a unifying background for the metrics used in prior works as well as
those we introduce. Section 4 builds the bridge from a standard, concrete model
of leakage (Hamming weight with Gaussian noice) to noisy leakage models. In
Section 5, we detail our tight reduction from the noisy leakage model to the
probing model. Our amplification-based proofs are described Section 6.

2 Preliminaries

In this section we recall basic notation and notions used throughout the paper.

2.1 Notation

For any ` ≥ 1, we denote by [`] the set {1, . . . , `}. We denote by X a finite set, by
x an element of X , by X a random variable over X , and by PX the corresponding
probability mass function (i.e. the function PX : x 7→ P[X = x]). We often abuse
notation and denote by P the distribution defined by a probability mass function
P. For a distribution P over X , we denote by x ← P the action of sampling x
from the distribution P .
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For any distribution P and any function f over X , we denote by f(P ) the
distribution of f(x) induced by sampling x ← P . We denote by Supp(X) :=
{x ∈ X | PX(x) > 0} the support of a random variable X over X (and we define
similarly the support of a distribution).

For any random variable X over X and a function f : X → Y, we use the
following notation:

EX [f(X)] =
∑
x

f(x) · P[X = x] .

For two random variables X,Y over X , the statistical distance between X and
Y is defined as:

∆SD(X;Y ) :=
1

2

∑
x∈X
|P[X = x]− P[Y = x]| .

Similarly, the Euclidean norm between X and Y is defined as:

∆EN(X;Y ) =

√∑
x∈X

(P[X = x]− P[Y = x])
2
.

Finally, if X,Y have the same support, their relative error is:

∆RE(X;Y ) := max
x∈Supp(X)

∣∣∣∣P[X = x]

P[Y = x]
− 1

∣∣∣∣ .
We now recall these two definitions from [DDF14] and [PR13]:5

SD(X|Y ;X) =
∑
y

P[Y = y] ·∆SD(X|Y = y;X)

EN(X|Y ;X) =
∑
y

P[Y = y] ·∆EN(X|Y = y;X)

2.2 The Rényi Divergence

The Rényi divergence [Ré61] is a measure of divergence between distributions.
In the recent years, it has found several applications in lattice-based cryptog-
raphy [BLL+15,Pre17]. When used in security proofs, its peculiar properties
allow designers of cryptographic schemes to set some parameters according to
the number of queries allowed to an attacker, rather than to the security level,
and this has often resulted in improved parameters. We first recall its definition
as well as some standard properties.

5 Instead of SD and EN, [DDF14] and [PR13] used the notations ∆ and β; we prefer
our notation as it avoids any confusion with greek letters denoting scalars.
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Definition 1 (Rényi divergence). Let P,Q be two distributions over X such
that Supp(P ) ⊆ Supp(Q). For a ∈ (1,+∞), their Rényi divergence of order a
is:

Ra(P‖Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

In addition, the Rényi divergence of order +∞ is

R∞(P‖Q) = max
x∈Supp(P )

P (x)

Q(x)
.

This definition is common in the lattice-based cryptography literature, whereas
the information theory literature favors its logarithm as the definition. Classical
properties of the Rényi divergence may be found in [FHT03], and cryptographic
properties may be found in [BLL+15,Pre17]. In this paper, we use the following
composition properties from [BLL+15].

Lemma 1. For two distributions P,Q and two families of distributions (Pi)i, (Qi)i,
the Rényi divergence verifies the following properties:

– Data processing inequality: For any function f , Ra(f(P )‖f(Q)) ≤ Ra(P‖Q).
– Multiplicativity: Ra(

∏
i Pi‖

∏
iQi) =

∏
iRa(Pi‖Qi).

– Probability preservation: For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P (E)
a

a−1 /Ra(P‖Q) ,

Q(E) ≥ P (E)/R∞(P‖Q) .

2.3 Pointwise Mutual Information

The pointwise mutual information is a common tool in computational linguis-
tics [CH89], where it serves as a measure of co-occurence between words. For
example, the pmi of “Sean” and “Penn” is high because Sean Penn is a well-
known person, whereas the pmi of “bankruptcy” and “success” is low because
the two words are rarely used in the same sentence.

Formally, the pointwise mutual information is defined as follows.

Definition 2 (Pointwise mutual information). Let X,Y be random vari-
ables over X . Then, for any (x, y) ∈ Supp(X)× Supp(Y ), we have:

pmiX,Y (x, y) = log

(
P[X = x, Y = y]

P[X = x]P[Y = y]

)
.

We also define its exponential form as:

PMIX,Y (x, y) = epmiX,Y (x,y) − 1 =
P[X = x, Y = y]

P[X = x]P[Y = y]
− 1 .
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We note that when they are close to 0, pmiX,Y (x, y) ∼ PMIX,Y (x, y). The mutual
information between X and Y can be simply expressed from the pointwise mutual
information, since we have:

MI(X;Y ) = E(X,Y )

[
pmiX,Y

]
,

where (X,Y ) denotes the joint distribution of X and Y . When X and Y are
clear from context, we may omit the subscripts and simply note pmi and PMI.

Interestingly, as we show in the next section, several metrics in leakage-resilient
cryptography can be defined simply using the pointwise mutual information.

3 Unifying Leakage Models via the Pointwise Mutual
Information

As already explained, in the noisy leakage model (defined below), an adversary
learns noisy information f(x) about every intermediate result x of a computa-
tion. The hope is that this leakage does not reveal much information about the
actual value x, which is translated by the fact that the distribution X is close to
the distribution X|f(X). Two main notions of closeness (corresponding to two
noisiness metrics) have been proposed, namely EN and SD.

3.1 Noisiness Metrics from Pointwise Mutual Information

It appears that the above noisiness metrics can easily be related to the pointwise
mutual information, as we state in the following immediate proposition. Other
natural metrics can also be derived from the pointwise mutual information, and
we define two additional metrics in the subsequent definition.

Let us define the following four metrics with respect to the PMI.

Definition 3 (Noisiness metrics). Let X,Y be random variables over sets
X ,Y respectively. We define the following metrics based on the pointwise mutual
information:

– SD(X|Y ) := 1
2 · EXEY [|PMI|] ;

– EN(X|Y ) := EY
√
EX

[
P[X] PMI2

]
;

– RE(X|Y ) := maxx,y |PMI| ;
– ARE(X|Y ) := EY [maxx |PMI|] .

The four notions of noisiness defined here compute different norms of the
(PMI)x,y: SD compute the average value of |PMI |, RE computes its max, and
ARE computes something in between.

Note that this difference in their definition (average-case vs worst-case) is
mirrored in the random probing models (average random probing vs random
probing), so it is perhaps unsurprising that reductions between worst-case mod-
els (ARE-noisy leakage to random probing in Section 5) incur no loss, as well
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as those between average-case models (SD-noisy leakage and average random
probing in [DFS15b]), but that the worst-case-average-case reduction of [DDF14]
incurs a loss by a factor |X |.

We note that these definitions of SD and EN match the ones given in
section 2.1: SD(X|Y ) = SD(X|Y ;X) and EN(X|Y ) = EN(X|Y ;X). This
is done on purpose as we aim at introducing new noisiness metrics without
discarding previously defined ones. We do so by expressing them all with a
single common notion: the pointwise mutual information. The acronyms RE
and ARE stand for Relative Error and Average Relative Error. We note that
RE(X|Y ) = maxy∆RE(X|Y = y;X) and ARE(X|Y ) = EY∆RE(X|Y ;X).

We now define a generic notion of noisy functions, parameterized by any of
the above metrics.

Definition 4 (Noisy functions). Let D ∈ {SD,EN,RE,ARE} be one of the
metrics defined in definition 3, X be a random variable over a set X and δ ≥ 0.
We say that a function f : X → Y is δ-noisy for the metric D and the random
variable X (or for short, δ-D-noisy for X) if:

D(X|f(X)) ≤ δ .

If X follows the uniform distribution, we simply say that f is δ-D-noisy.

This definition highlights an important caveat of the noisy leakage model:
the notion of noisy function is implicitly parameterized by an underlying distri-
bution X. However, we will later show in Lemma 2 than for RE- and ARE-noisy
functions, we can abstract ourselves from the underlying distribution at the cost
of essentially a factor 2 in the noise parameter δ.

3.2 Basic properties

Before moving to the core results of the paper, we detail a few properties relating
the above noisiness metrics to each other.

Proposition 1. Let X,Y denote random variables over finite sets. Then we
have:

1. SD(X|Y ) = SD(Y |X) ;
2. RE(X|Y ) = RE(Y |X) ;
3. 2 · SD(X|Y ) ≤ ARE(X|Y ) ≤ RE(X|Y ) .

Moreover, if X follows the uniform distribution over a set X of size N , then:

ARE(X|Y ) ≤ 2N · SD(X|Y ) . (1)

The above properties are immediate from Definition 3. We however provide a
proof for the last one. Note that, as mentioned in the introduction, our reduction
from the ARE-noisy leakage model to the random probing model described in
Section 5 is tighter by a factor N compared to reduction from the SD-noisy
leakage model to the random probing model from [DDF14]. Hence (1) implies
that even in the worst case, our results give at least as good bounds (up to a
factor 2) as prior reductions.
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Proof. Since X is uniform, P[X = x] = 1
N for any x ∈ X . Hence for any fixed y:

max
x
|PMI | ≤

∑
x∈X
|PMI | = N · EX |PMI | .

Then (1) follows from the definitions of SD and ARE.

Remark 1. Note that the item 3 is tight. Indeed, considering the “checkerboard
distribution” Z = (X,Y ) defined over J0,m− 1K× J0, n− 1K via:

P[X = x, Y = y] =
1

mn

(
1 + (−1)x+yδ

)
,

One can easily check that 2SD(X|Y ) = ARE(X|Y ) = RE(X|Y ) = δ.

We can also relate the SD-noisiness and the RE-noisiness to the mutual infor-
mation via the following inequalities, whose proofs are detailed in Appendix A:

Proposition 2. Let X,Y denote random variables over finite sets. Then, we
have:

2SD(X|Y )2 ≤ MI(X;Y ) ≤ 2RE(X|Y )SD(X|Y ) .

The left inequality was already proven in [DFS15a, Theorem 1]. However, our
proof relies on a completely different interpretation of the mutual information,
and is arguably much simpler.6 On the other hand, the right inequality improves
a previous bound given in [DDF14] by a factor N

ln(2)RE(X|Y ) . Overall, it allows

to bound MI(X;Y ) up to a factor SD(X|Y )
RE(X|Y ) .

Finally, we provide a self-reducibility lemma for RE-noisy and ARE-noisy
functions. We show that the underlying distribution is not too important, as a
function f which is δ-noisy for a distribution X is also Θ(δ)-noisy for any other
distribution X ′.

Lemma 2 (Self-reducibility). Let X,X ′ be two arbitrary distributions of sup-
port X and f : X → Y be a randomized function. Suppose that f is δRE-RE-noisy
(resp. δARE-ARE-noisy) for X. Then:

1. f is
(

2·δRE

1−δRE

)
-RE-noisy for X ′;

2. f is
(

2·δARE·(1+δRE)
1−δARE

)
-ARE-noisy for X ′.

Lemma 2 is similar to [DFS16, Lemma 2], which shows that if f is δ-SD-noisy
for X the uniform distribution, then it is (3Nδ)-SD-noisy for any distribution
X ′. Our proposition is more powerful than [DFS16, Lemma 2]: X can be any
distribution, and the tightness loss is O(1) as long as δRE ≤ 1− c for a constant
c. The proof of Lemma 2 is given in Appendix B.

6 In addition, this interpretation of MI in terms of the Kullback-Leibler divergence
gives us for free several bounds which are tighter for non-negligible values of SD: for

example MI ≥ log
(

1+SD
1−SD

)
− 2SD

1+SD
[Vaj70] or MI ≥ 2SD2 + 4

9
SD4 +O(SD6) [FHT03].
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3.3 Noisy Leakage Adversary

We finally define the noisy leakage model. We consider an arbitrary sequence
(x1, . . . , x`) ∈ X `, with X being some finite set and ` being some parameter
(typically the number of intermediate results in a computation). We denote by
A a (possibly unbounded) adversary.

Definition 5 (Noisy Leakage Adversary). Let D ∈ {SD,EN,RE,ARE}.
For 0 ≤ δ ≤ 1, a δ-D-noisy adversary on X ` is a machine A that plays the
following game against an oracle that knows (x1, . . . , x`) ∈ X `:
1. A picks δ-D-noisy functions (fi)i∈[`] with range Y;

2. A receives (fi(xi))i∈[`] ∈ Y` and outputs outA(x1, . . . , x`).

4 From Concrete Leakage to Noisy Leakage Models

In order to have a full-fledged security proof of a circuit compiler with a leakage
model, the first step consists in linking the concrete representation of the leakage
to a noisy leakage model. This allows to ground firmly our metrics and models
in the reality, and guarantee that the gains observed in subsequent sections are
not artifacts of definitions.

4.1 A concrete modelization of the leakage

A common representation of the leakage f(X) corresponding to the manipulation
of an intermediate variable X is a function l(X) tempered by the addition of
a Gaussian noise N (0, σ). The function l is then defined by the consumption
model. The most widely used consumption model is the Hamming weight model
initially used by Brier, Clavier, and Olivier in [BCO04], namely:

f(x) = HW(x) +N (0, σ) ,

Our goal is now to determine how (RE/ARE/SD/EN)-noisy the function f
is. We consider that x is distributed according to a uniformly random variable
X over the set J0, N − 1K, where N = 2n is a power of two. This assumption is
realistic since in a cryptographic algorithm, the diffusion of the random private
key throughout the computation makes any intermediate variable looks like a
random variable. As an illustration, we give in Figure 2 a toy example for the
distributions of f(X) and f(X)|(HW(X) = k).

4.2 A visual interpretation of the noisiness metrics

We give an intuition on how the different noisiness metrics are connected to
the Hamming weight consumption model with the help of Figure 2. Let Y =
f(X) and Yk = f(X)|(HW(X) = k). By Definition 3, we can link the four
metrics to the pointwise mutual information. The pointwise mutual information
can be depicted as the ratio between one of the Yk curves and the Y curve,

minus 1: PMI(x, y) =
YHW(x)(y)

Y (y) − 1. With this in mind, we can provide a visual

interpretation of the four metrics as follows:
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f(X)|(HW(X) = k)

Figure 2: Distribution of the noisy function f(X) = HW(X) + N (0, 1) when
X is uniformly distributed over J0, 24 − 1K. The conditional distributions
f(X)|(HW(X) = k) (for k = 0, . . . , 4) are also represented.

– SD. The metric SD simply computes a ponderated mean of |PMI |.
– RE. Since RE is the max of |PMI |, it is essentially the maximum, minus 1,

of the ratio Y0/Y : this maximum is reached at the far right of Figure 2, and
imposes a tailcut for the reasons detailed in Remark 2;

– ARE. Since ARE computes the mean (over Y ) of the max (over X) of
|PMI |, it can be visually interpreted as the mean on the right side of the
Figure 2 of “the ratio Y0/Y , minus 1”.

– EN. The visual interpretation of EN is a little more complex. Since here X

is uniform, we have EN(X|Y ) = 1√
N
EY
√
EX

[
PMI2

]
, so EN is essentially

the scaled expected value (over Y ) of Euclidean norm (over X) of the PMI.

Remark 2. We note that RE(X|f(X)) is not formally defined as the value
|PMI(x, y)| can be arbitrarily large. We overcome this issue by observing, see
Proposition 5, that with overwhelming probability f(X) lies in the interval

[−τσ, τσ + logN ], where τ =
√
−2 log(2−λ

√
2π) = Θ(

√
λ). We can then de-

fine RE(X|f(X)) with a tailcut argument.

4.3 Estimating the noisiness metrics in practice

In order to estimate the noisiness of f (with respect to RE, ARE, SD, and
EN), we derive asymptotic bounds as shown in Proposition 3. To back up our
theoretical results, we used a Sage implementation (which source code is given
in Appendix E) and obtained numerical values which match exactly our results.

Proposition 3. Let X be a uniformly random variable over the set X = J0, N−
1K, where N = 2n is a power-of-two. Let Y = R, and f : X → Y be defined with
the Hamming weight model, namely:

f(x) = HW(x) +N (0, σ) .

Let τ ∈ [1;σ] be a tailcut rate such that |N (0, σ)| ≤ τ · σ with overwhelming
probability. Then, for sufficiently large values of σ and N it holds that:
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RE(X|f(X)) ∼ C1 · 1
σ · τ · logN , with C1 = 1

2

ARE(X|f(X)) ∼ C2 · 1
σ · logN , with C2 = 1√

2π

SD(X|f(X)) ∼ C3 · 1
σ ·
√

logN , with C3 = 1
2π

EN(X|f(X)) ∼ C2 · 1
σ ·
√

logN
N .

The proof of Proposition 3 can be found in Appendix E. We note that a
different model of the concrete leakage (say, x added to binomial noise) could
lead to completely different equations.

RE vs ARE. The noisiness metric RE incurs an overhead of O(τ) compared
to ARE. All other parts being equal, it is therefore more desirable to use the
latter than the former. This observation is the ground motivation behind the use
of ARE to show the reduction between the noisy leakage model and the probing
model in Section 5.

ARE vs SD. Since ARE incurs an overhead of O(
√

logN) compared to SD,
one could be tempted to say that the latter leads to tighter bounds. However, we
show in section 5 that when reducing to the random probing model, SD incurs
an overhead of O(N) compared to ARE. When linking the random probing
model to a concrete model of leakage, ARE therefore allows a total gain of
O(N/

√
logN) compared to SD.

EN vs others. Unlike the other noisiness metrics, EN is Õ(1/
√
N). This sug-

gest that this metric should lead to the most efficient discrimination of the four,
but we see in Section 6 that in amplification-based proofs, the EN currently
incurs a total overhead which is polynomial in N (compared to RE).

On the definition of EN. The presence in practice of a factor Õ(1/
√
N) in

EN (as highlighted in item 4.3) suggests that the definition of EN is perhaps
not the right one, along with other circumstantial evidence:

– In proposition 3, the definition of EN in terms of the pointwise mutual
information is not as clean as for the other metrics;

– Several noise amplification theorems in [PR13] have an overhead O(NO(d)).
One could think this overhead is an artifact of the proof, but in some cases
(such as [PR13, Theorem 1]), it is in fact an artifact of the definition.

5 From ARE-Noisy Leakage Model to Threshold-Probing
Model

While noisy-leakage models defined in Section 3.3 capture well what leaks from
an actual computation on physical devices, it is fairly hard to build cryptosys-
tems that achieve security in these complex models. Therefore, simpler and more
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idealistic models are often considered for constructing leakage-resilient cryptog-
raphy. The most common model is the threshold-probing model, introduced by
Ishai, Sahai, and Wagner in [ISW03]. In this model, an adversary can learn a
bounded number of exact intermediate results of the computation (instead of
noisy information about every intermediate results). This probing model being
much simpler, it is easy to immunize any computation against such adversaries,
and the hope is that secure constructions in this model offer some guarantees
against more realistic forms of leakage.

Fortunately, it was recently proven in [DDF14] that this intuition is correct:
Duc et al. proved that a construction secure in the threshold probing model is
also secure in the SD-noisy leakage model. However, the reduction comes with
an overhead in the size of the field. In [DFS15a], the authors showed with em-
pirical methods that this overhead can be significantly reduced. In this section,
we aim to demonstrate an improvement of [DFS15a] by using the ARE-noisy
leakage model7 instead of the SD-noisy-leakage model. Our proof follows a sim-
ilar strategy as the original proof in [DDF14]. As an outcome, the reduction
between the two leakage models produces a tighter bound compared to the pre-
vious results in the state-of-the-art, thus providing stronger security guarantees
for probing-secure constructions in the real world.

5.1 Probing Models

We first recall standard models of adversaries relevant in our context, as defined
in [DDF14].

Random-Probing Model. For 0 ≤ ε ≤ 1, we denote by idε : X → X ∪ {⊥} the
function that on input x ∈ X outputs x with probability ε and ⊥ otherwise. For
0 ≤ ε ≤ 1, an ε-random-probing adversary on X ` is a machine A that plays the
following game against an oracle that knows (x1, . . . , x`) ∈ X `:
1. A picks a (ε1, . . . , ε`) ∈ [0; ε]`;
2. A receives (idεi(xi))i∈[`] ∈ (X ∪ {⊥})` and outputs outA(x1, . . . , x`).

Threshold-Probing Model. For 0 ≤ d ≤ `, a d-threshold-probing adversary on
X ` is a machine A that plays the following game against an oracle that knows
(x1, . . . , x`) ∈ X `:
1. A picks a set I ⊆ [`] with |I| ≤ d;
2. A receives (xi)i∈I ∈ X |I| and outputs outA(x1, . . . , x`).

Following the methodology of [DDF14], our proof proceeds in two steps:

1. reduction from the ARE-noisy leakage model to the random-probing model
(Section 5.2);

2. reduction from the random-probing model to the threshold probing model
(Section 5.3).

7 Note that the reduction can also work with the RE-noisy leakage model. However,
as shown in previous section using the ARE metric always induces tighter reduction
than the RE metric.
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5.2 From ARE-Noisy Leakage Model to Random-Probing Model

The first step consists in reducing the ARE-noisy leakage model to the random-
probing model. The main technicality consists in proving the following lemma,
which is the ARE-noisy version of [DDF14, Lemma 2] that was given in the SD-
noisy setting. The proof of this lemma is analogous to its SD-noisy counterpart
and is detailed in the full version of the paper. We denote the equality between

two distributions P and Q by P
d
= Q.

Lemma 3. Let f : X → Y denote a δ-ARE-noisy function for some distribution
X. Then, there exists a (randomized) function f⊥ : X ∪ {⊥} → Y such that for
all x ∈ X :

f(x)
d
= f⊥(idδ(x)) .

Moreover, if f is poly-time-noisy8, then f⊥ is efficiently computable.

We then obtain the following corollary:

Corollary 1. Let A be a δ-ARE-noisy adversary on X `. Then there exists a
δ-random-probing adversary S on X ` such that for all (x1, . . . , x`) ∈ X `:

outS(x1, . . . , x`)
d
= outA(x1, . . . , x`) .

Moreover, if A is poly-time-noisy9, then S runs in polynomial time.

Proof. It immediately follows from Lemma 3. S simply runs A which it provides

with (f⊥i (idδ(x)))i∈[`]

d
= (fi(x))i∈[`] as inputs. When A halts, so does S with the

same output. ut

Interestingly we have an opposite reduction from random probing model to
ARE-noisy leakage model. However this reduction comes with a loss in tightness
by a factor N − 1.

Lemma 4. If A is a δ-random probing adversary on X `, then it is also a (|X |−
1) · δ-ARE-noisy leakage adversary on X `.

Proof. From the definitions, it is immediate that the δ-identity idδ is also a
(|X | − 1) · δ-ARE-noisy function for any distribution.

5.3 From Random-Probing Model to Threshold-Probing Model

The second step consists in reducing the random-probing model to the threshold-
probing model. This step follows immediately from the results in [DDF14] and
is independent of the metric.

8 By poly-time-noisy, we mean that f is poly-time computable, produces outputs in a
finite set Y, and P[fi(x) = y] is poly-time computable for all x, y, i.

9 By poly-time-noisy, we mean that A queries only poly-time-noisy functions (fi)i.
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Lemma 5 (Lemma 4 of [DDF14]). Let A be a δ-random-probing adversary
on X `. Then, there exists a (2δ`− 1)-threshold-probing adversary S on X ` with
similar running-time such that ∀(x1, . . . , x`) ∈ X `:

outA(x1, . . . , x`)
d
= outS(x1, . . . , x`) ,

as long as outS(x1, . . . , x`) 6= ⊥. Moreover, the latter happens with probability:

P[outS(x1, . . . , x`) 6= ⊥] ≥ 1− exp

(
−δ`

3

)
.

The proof immediately follows from the fact that with probability at least 1 −
exp

(
− δ`3

)
(thanks to the Chernoff bound), a δ-random-probing adversary on X `

obtain at most 2δ`− 1 of the xi’s.

5.4 Putting Everything Together

Combining Corollary 1 and Lemma 5, we then obtain the following theorem:

Theorem 1. Let A be a δ-ARE-noisy adversary on X `. Then, there exists a
(2δ`− 1)-threshold-probing adversary S on X ` such that:

outA(x1, . . . , x`)
d
= outS(x1, . . . , x`) ,

as long as outS(x1, . . . , x`) 6= ⊥, which happens with probability:

P[outS(x1, . . . , x`) 6= ⊥] ≥ 1− exp

(
−δ`

3

)
.

Moreover, if A is poly-time-noisy, then S runs in polynomial time.

For comparison, the main theorem from [DDF14] states that a δ-SD-noisy
adversary can be simulated by a (2δ` · |X |−1)-threshold probing adversary, with
success probability at least 1 − exp (−δ`/(3|X |)). Hence, we gain a multiplica-
tive factor X in the number of probes and reduce the failure probability by an
exponential factor in X .

5.5 Circuit leakage resilience

Let us define a circuit compiler as in [DDF14]. Let us consider an adversary able
to probe at most b(d− 1)/2c wires from each gadget (i.e. masked operations) of
the implementation. We define a (δ, ζ)-noise resilient implementation as follows:

Definition 6 (D-noise resilient implementation). Let Γ be an stateful arith-
metic circuit over X and Γ ′ denote the resulting masked circuit obtained via
applying the compiler. Let Enc denote a randomized encoding function (i.e. that
transform an input into a masked input). Let D ∈ {SD,EN,RE,ARE} be a
noisiness metric. We say that Γ ′ is a (δ, ζ)-D-noise resilient implementation of
Γ with respect to Enc if the following properties hold for every input k:
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1. the input-output behavior of Γ (k) and Γ ′(Enc(k)) is identical, i.e. for every
sequence of inputs a1, . . . , am and outputs b1, . . . , bm we have

P[Γ (k, a1, . . . , am) = (b1, . . . , bm)] = P[Γ ′(Enc(k), a1, . . . , am) = (b1, . . . , bm)]

2. for every δ-D-noisy adversary A there exists a black-box circuit adversary S
such that

∆SD

(
out

(
A

noisy

� Γ ′(Enc(k))

)
; out

(
S

bb
� Γ (k)

))
≤ ζ

Then we have the following theorem.

Theorem 2. Let Γ be an arbitrary stateful arithmetic circuit over X . Let Γ ′

be the masked circuit.Then Γ ′ is a (δ, |Γ |exp(−d/12))-RE-noise-resilient imple-
mentation of Γ with efficient simulation where

δ =
1

28d+ 16
= O(1/d)

The proof is the exact same as the one given in [DDF14] with a numerical
gain of a factor |X | in δ due to the use of ARE in Theorem 1.

6 A New Amplification-Based Proof for Block Ciphers

In this section, we revisit the approach initiated in [PR13] by Prouff and Ri-
vain. Recall that in the latter work, the authors propose a solution to immunize
block-ciphers in the noisy-leakage model (with the Euclidian norm EN measuring
noisiness). They propose a secret-sharing based immunization for block-ciphers,
basically by replacing every operations (linear functions and s-box evaluations)
by one that operates on additive shares of the inputs and produce additive shares
of the output. They analyze the security by decomposing the resulting protocol
into 4 types of basic subsequences of operations: two types corresponding to sim-
ple subsequences and two types corresponding to more complex subsequences.
The overall protocol is then proven secure by composition, assuming leak-free re-
fresh gates can be used between each subsequence to refresh the additive shares.
We refer the reader to Section 4 of [PR13] for the details about how to construct
the secure subprotocols. The 4 types of subsequences needed for the analysis
are recalled below. We propose a different security analysis in the noisy-leakage
model using the RE metric instead of the Euclidian norm. Doing so, we are able
to prove much tighter bounds for the security.

The 4 types of subsequences to consider are:

T1. (zi ← g(xi))0≤i≤d, with g being a linear function (of the block-cipher);
T2. (zi ← g(xi))0≤i≤d, with g being an affine function (of an s-box evaluation);
T3. (vi,j ← ai × bj)0≤i,j≤d (first step of secure non-linear multiplication);
T4. (ti,j ← ti,j−1 ⊕ vi,j)0≤i,j≤d (fourth step of secure non-linear multiplication).
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While type 1 is obviously a particular case of type 2, we treat them separately as
we are able to prove a better bound for linear functions than for affine functions.

In the rest of this section, we first provide several basic properties on the RE
metric (Section 6.1). Then, in Section 6.2 we analyze the leakage of each type of
subsequences. Next, we argue about the security of a complete evaluation of the
block-cipher in Section 6.3. Finally, in Section 6.4 we apply the Rényi divergence
to get a tight amplification-based proof and overcome the limitations in [PR13].

6.1 Basic Properties and Amplification for the Relative Error

First, we give several basic properties of RE-noisy functions and of the RE-
noisiness metric that are used in our proofs. We essentially show that the relative
error is preserved under function, application, projection and lifting on X. We
also prove an amplification result (Lemma 6) that is central throughout our
security analysis.

Proposition 4. Let X,Y,W denote random variables over finite sets X ,Y and
W respectively. Then we have the following:

1. Data processing. Let f : X → Y be a δ-RE-noisy function for X, and
g : X → X be a (non necessarily deterministic) function. It holds that:

RE(X|f ◦ g(X)) ≤ 2δ

1− δ
∼
δ→0

2δ .

In addition, if g is deterministic and bijective, then RE(X|f ◦ g(X)) = δ.
2. Conservation under projection and lifting.

RE(X|Y ) ≤ RE((X,W )|Y ) . (2)

In addition, if X and W are independent and f : W → Y is a RE-noisy
function for W , then:

RE((X,W )|f(W )) = RE(W |f(W )) . (3)

The proof of Proposition 4 is detailed in Appendix F.1.

Remark 3. Note that Inequality 1 is tight: Indeed, if we consider the checker-
board distribution of remark 1, take f(X) = Y , g(0) = 0 and for any x > 0,
g(x) = 1, then:

RE(X|f(X)) = δ and RE(X|f ◦ g(X) =
2(1− 1/m)δ

1− (1− 2/m)δ
∼

m→∞

2δ

1− δ
.

Note that Inequality 2 is also tight via (3).

We also prove the following amplification lemma for the relative error. It
is the relative error counterpart (though the proof is completely different) of
an amplification lemma by Maurer, Pietrzak and Renner [MPR07, Lemma 1].
In the context of leakage-resilient cryptography, the latter result was used and
improved by [DFS15b,DFS16].
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Lemma 6. Let F be a finite field. Let Z = U(F) be the uniform distribution
over F, and Z1, . . . , Zd be d independent random variables over F. It holds that:

∆RE

((
d∑
i=1

Zi

)
;Z

)
≤

d∏
i=1

∆RE (Zi;Z) .

The proof of Lemma 6 is detailed in Appendix F.2.

6.2 Security Analysis of Subsequences

We now detail our security analysis for the 4 different types of subsequences to
be considered.

Type 1 and type 2 subsequences. We first deal with the simple case of
subsequences where all the shares of a secret value are processed separately, i.e.
for linear and affine functions. From a security perspective, these are the simplest
subsequences as each share only leaks partial information once.

Type 1 subsequences. We first prove the following theorem for type 1 subse-
quences, which follows almost immediately from Lemma 6. For the sake of com-
pleteness, we provide a proof in Appendix F.3.

Theorem 3. Let X be a uniform random variable over a finite field X and
(Xi)i∈{0,...,d} be a (d+1)-additive sharing of X10. Let δ ∈ [0, 1) and f0, f1, . . . , fd
be δ-RE-noisy-leakage functions over X . Then, we have:

RE(X|f0(X0), . . . , fd(Xd)) ≤ δd+1 .

Unlike [PR13, Theorem 1], we do not get a overhead of Nd/2 in our amplification
theorem. One could think that this overhead is an artifact of their proof, but
circumstantial evidence such as the presence in practice of a factor 1/

√
N in

EN(Xi|fi(Xi)) let us think that it is inherent to the use of the Euclidean norm.

Type 2 subsequences. We can now easily analyze the security of type 2 subse-
quences, i.e. affine functions of s-box evaluations. Such evaluations are handled
via Lagrange interpolation in [PR13], so each elementary calculation processes
a share Gi of an encoding of g(X), where X is a uniform s-box input, and g is a
polynomial function. This case is covered by Corollary 2, whose proof immedi-
ately follows from Theorem 3 and Proposition 4, and is detailed in Appendix F.4.

Corollary 2. Let X be a uniform random variable over a finite field X , g :
X → X be a deterministic function, d be a positive integer and (Gi)i∈{0,...,d}
be a (d + 1)-additive sharing of g(X). Let δ ∈ [0, 1) and let f0, f1, . . . , fd be
δ-RE-noisy leakage functions over X . Then, we have:

RE(X|f0(G0), . . . , fd(Gd)) ≤
2δd+1

1− δd+1
∼
δ→0

2δd+1 .

10 Precisely,
d∑
i=0

Xi = X and the distribution of any strict subset of the Xi’s is uniform.
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Type 3 and type 4 subsequences. We now consider more complex subse-
quences, where a share is processed several times, and therefore may leak several
times in the same subsequence. We first give a generic theorem regarding the bias
induced by multiple leakages. We then use this theorem (whose proof is given in
Appendix F.5) to bound the leakage of subsequences of type 3 and type 4.

Theorem 4. Let X be a uniform random variable over a finite field X and t be
a strictly positive integer. Let δ ∈ [0, 1) and L1, . . . , Lt be t random variables such
that RE(X|Li) ≤ δ for every i. We further assume that the random variables
(Li|X = x) are mutually independent for every x ∈ X . Then, we have:

RE(X|L1, . . . , Lt) ≤
(

1 + δ

1− δ

)t
− 1 =

tδ→0
2 · tδ +O((tδ)2) .

In addition, if δ ≤ 1/t, then:

RE(X|L1, . . . , Lt) ≤
tδ

1− (t− 1)δ
=

tδ→0
tδ +O((tδ)2) .

Depending on the situation, we use one bound or the other in what follows.

Type 4 subsequences. We start by analyzing subsequences of type 4. Each ele-
mentary computation of these subsequences computes Ti,j ← Ti,j−1 ⊕ Vi,j , with
0 ≤ i, j ≤ d and Ti,0 = Vi,0. At the end, the shares (Zi)i = (Ti,d)i form an ad-
ditive sharing of g(X), where X is a uniform s-box input and g is a polynomial
function over X . Our goal here is to bound the bias of X given the leakages of
all these elementary computations. We give a first theorem (whose proof is given
in Appendix F.6) which bounds the bias of the shares (Zi)i = (Ti,d)i.

11

Theorem 5. Let T0, T1, . . . , Td be d+1 independent uniformly random variables
over a finite set X . Let δ ∈ R such that δ ≤ 1

2d+1 and f1, f2, . . . , fd be a family
of δ-RE-noisy functions defined over X × X . We have:

RE(Td|f1(T0, T1), . . . , f1(Td−1, Td)) ≤
dδ

1− (d− 1)δ
.

This implies the following corollary for the security of a subsequence of type 4:

Corollary 3. The leakage of type 4 subsequences is upper bounded by:

RE(X|(fi,j(Ti,j−1, Vi,j)0≤i,j≤d) ≤
2δ′d+1

1− δ′d+1
, with δ′ =

dδ

1− (d− 1)δ
.

11 For concision, Theorem 5 omits the subscript i and writes (Tj)j instead of (Tj)i,j .
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Type 3 subsequences. Only the case of type 3 subsequences remains, which is
the most delicate one. As a preliminary result, we provide an upper bound on
the bias for a uniform pair (A,B) given the leakage (fi,j(Ai, Bj))i,j .

Theorem 6. Let A,B be two uniform random variables over a finite field X , d
a positive integer, and (Ai)i, (Bi)i be d+ 1-additive-sharings of A and B respec-
tively. Let δ ∈ R such that δ ≤ 1

2d+1 , and (fi,j)i,j be a family of randomized and
mutually independent functions such that each fi,j : X ×X → Y is δ-RE-noisy.
We have:

RE((A,B)|(fi,j(Ai, Bj))i,j) ≤ 3

(
(d+ 1)δ

1− dδ

)d+1

.

The proof of Theorem 6 essentially combines Theorems 3 and 4, and is detailed
in Appendix F.7.

We now give the leakage of type 3 subsequences. The difference with The-
orem 6 is that A and B are not uniformly random, but rather A = g(X) and
B = h(X) for some polynomial functions g, h. We then have the following corol-
lary:

Corollary 4. Let X be a uniform random variable over a finite field X , let
g, h be two deterministic functions from X to X , d be a positive integer, and
(Gi)i, (Hi)i be d+ 1-additive-sharings of g(X) and h(X) respectively. Let δ ∈ R
such that δ ≤ 1

2d+1 , and (fi,j)i,j be δ-RE-noisy functions over X ×X . We have:

RE(X|(fi,j(Gi, Hj))i,j) ≤
2δ′

1− δ′
, with δ′ = 3

(
(d+ 1)δ

1− dδ

)d+1

.

Corollary 4 results from combining Theorem 6 with Proposition 4. It is detailed
in Appendix F.8.

6.3 From Subsequences to a Complete Computation

Now that we have bounded the leakages of the individual subsequences, the next
step is to bound the leakage of a single complete execution of a block cipher.

Modeling a block cipher. We use the same notations as in [PR13] and con-
sider the resulting block cipher (after applying their compiler to the original
block cipher), hereafter referred to as the masked block cipher. An evaluation of
the masked block cipher gives I = (Ci, fi)i, where the Ci’s denote elementary
computations (or gates) of the masked block cipher, each Ci being associated to
an RE-noisy function fi. We assume that the (original) cipher involves tlin lin-
ear transformations (corresponding to as many type 1 subsequences), taff affine
functions (type 2 subsequences), and tnlm nonlinear multiplications (types 3, 4).
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Uniformity of the key and of the subsequence inputs. The block cipher is
parameterized by a secret key k which is sampled from the uniform distribution
K over K = Xm. Each subsequence subseqj operates on an additive-sharing
of a random variable Xj . We can write Xj = gj(K,msg), where msg denotes
the message being processed by the block cipher, and gj is a publicly-known
function such that gj(·,msg) maps the uniform distribution over K to the uniform
distribution over X , which is the case for block ciphers in practice. Therefore the
inputs Xj ’s of each subsequence are uniformly random variables. Alternatively,
one could rely on Lemma 2.

Leakage of a block cipher evaluation. For a given subseqj , let Lj denote
its leakage. Since each gj(·,msg) maps the uniform distribution to the uniform
distribution, we have RE(K|Lj) = RE(Xj |Lj) from Proposition 4. Since the
t = tlin + taff + 2tnlm subsequences composing the circuit are interleaved with
leak-free refresh gates (by assumption), each of them operates on fresh random
shares, therefore the leakages (Lj |K = k) are mutually independent.

We suppose that there exists a δsubseq ≥ 0 such that ∀j,RE(Xj |Lj) ≤ δsubseq.
Theorems 3 and 5 as well as Corollaries 2 and 4 give us explicit conditions to
fulfill this bound for each subsequence. Via Theorem 4, the leakage δcirc of the
whole secure evaluation is bounded by:

δcirc ≤
tδsubseq

1− (t− 1)δsubseq
≈ tδsubseq

which is non-vacuous as long as δsubseq ≤ 1/(t− 1).

6.4 Overall Security Proof with the Rényi Divergence

Now that we have bounded the overall leakage of one evaluation of the block
cipher, we want to analyze the impact of this leakage on the concrete security of
the block cipher. This last section corresponds somehow to the end of [PR13],
where the leakage of an evaluation is translated into a bound on the mutual
information provided by the leakage. Yet, this incurs the following limitations.

Limitations of the Prouff-Rivain approach. The use of the mutual in-
formation is somewhat problematic in the sense that it provokes paradoxical
situations like the fact that a single pair of plaintext-ciphertext can information-
theoretically reveal the key. The authors circumvent this by considering a random-
plaintext attack where plaintexts and ciphertexts are both unknown. This does
not cover many situations encountered in cryptography and is highly unusual
compared to most works, which consider at least a chosen-plaintext attack. Fi-
nally, while not stated explicitly, for concrete security we need the mutual in-
formation to be upper bounded by 2−O(λ), where λ is the targeted security pa-
rameter of the block cipher, hence the masking order depends only on λ and in
particular does not depend on the amount of leakage the adversary can observe.
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A proof based on the Rényi divergence. In this section, we provide an
alternative security proof based on the Rényi divergence instead of the mutual
information. This provides two main benefits compared to the previous work: (1)
We can consider classical chosen-plaintext attacks, and (2) the requirement on
the noise is much lower because it does not depend on the security level anymore
but on the number of leakages, denoted q in what follows.

Description of the games. We consider two games. The first game models a
black-box interaction of an attacker with an encryption oracle and corresponds
to the standard security model such as the IND-CPA security game model. The
second game models a grey-box interaction where the attacker has, in addition,
access to leakage. This grey-box interaction captures the behavior of a block
cipher in the real-world. We also introduce a third artificial (but easier) game
which we use to connect the latter two games. These three games are summarized
in Figures 3, 4, and 5 and are precisely described below.

Let A be an adversary interacting with an (encryption and decryption) oracle
O in the following fashion:

1. O draws a secret key k ← K, where K denotes the uniform distribution over
a finite set K;

2. A makes a finite number q of queries to O. This is the part where the three
games differ:

– Game 1 (black-box ): A sends q plaintexts msg1, . . . ,msgq to O, who sends
back the q corresponding ciphertexts ctxt1 = Ek(msg1), . . . , ctxtq =
Ek(msgq);

– Game 2 (grey-box ): A sends q plaintexts msg1, . . . ,msgq to O. For each
plaintext msgi, O sends back the corresponding ciphertexts ctxti but also
some value Li which modelizes the physical leakage occurring during the
computation ctxti ← Ek(msgi), and gets recorded by A;

– Game 3 (hybrid): This is a 2-stage game:

(a) first, A sends q plaintexts msg′1, . . . ,msg′q, and O sends back the
corresponding leakages Li but not the ciphertexts Ek(msg′i).

(b) second, A sends q plaintexts msg1, . . . ,msgq, and O sends back the
ciphertexts Ek(msg′i) but not the corresponding leakages Li.

3. After the query-reply phase, A outputs a value k′. A wins the game if k = k′.

Relationships between the games. It is clear that any attacker A that suc-
ceeds in Game 1 also does in Game 2, since A can choose to discard the additional
leakage L1, . . . , Lq, in which case Game 2 becomes identical to Game 1. Similarly,
any attacker that succeeds in Game 2 also does in Game 3 by simply querying
msg′i = msgi,∀i. Hence, it is sufficient to prove that the success probability of
an adversary in Game 3 is close (in a precisely quantifiable way) to its success
probability in the ideal Game 1 to argue that security holds in the real-world
(Game 2). This is what we do in the rest of this section.
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A O
msg1, . . . ,msgq

ctxt1, . . . , ctxtq

Figure 3: Game 1
Black-box

A O
msg1, . . . ,msgq

(ctxt1, L1), . . . , (ctxtq, Lq)

Figure 4: Game 2:
Grey-box

A O
msg′1, . . . ,msg′q

L1, . . . , Lq

msg1, . . . ,msgq

ctxt1, . . . , ctxtq

Figure 5: Game 3:
Hybrid

Applying the Rényi divergence. At the end of the first step of Game 3, A
has learnt leakages L1, . . . , Lq. These leakages imply a bias in the distribution of
possible secret keys K (which was originally the uniformly random distribution).
We denote by K ′ the distribution (K|L1, . . . , Lq). Hence, after the first step of
Game 3, the vision of A is the same as playing Game 1 with the secret key being
taken from distribution K ′ (instead of uniformly at random).

Suppose that ∀i,RE(K|Li) ≤ δcirc for some δcirc ∈ [0, 1). Assuming leak-free
refresh gates, it follows from Theorem 4 that:

∆RE(K ′;K) = RE(K|L1, . . . , Lq) ≤
(

1 + δcirc

1− δcirc

)n
− 1 . (4)

Let E ⊆ Supp(K) be an arbitrary event. We recall that K(E) denotes the
probability of E occurring under the distribution K. First, from the probability
preservation property of the Rényi divergence (Lemma 1):

K ′(E) ≤ K(E) ·R∞(K ′‖K). (5)

On the other hand, from the definition of the Rényi divergence:

R∞(K ′‖K) ≤ 1 +∆RE(K ′;K) (6)

Combining (4), (5) and (6) yields

K ′(E) ≤ K(E) ·
(

1 + δcirc

1− δcirc

)q

Practical implications. The consequence of this security proof is that as long
as the number of leakage queries q is in O(1/δcirc), an adversary does not have
significantly larger chances to break a leaking block cipher implementation than
it does for the black-box implementation.

For example, let E be the event that A solves a search problem (finding
a secret key, forging a signature, decrypting a message, etc). If we take q ≤
1/δcirc, then K ′(E) ≤ e2K(E), which means that the leakages do no improve the
probability of A solving the search problem by more than a factor e2; this means
that less than 3 bits of security have been lost between the black-box (Game 1)
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and leaking (Game 2) implementations. In contrast, an analysis based on the
statistical distance or the mutual information would require δcirc = 2−O(λ).

We note that this Rényi-divergence based analysis is only valid for search
problems: achieving the same efficiency for decision problems is still an open
question [BLL+15,Pre17] .
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Supplementary material

A Proof of Proposition 2

The left inequality follows from a specific characterization of the mutual infor-
mation:

MI(X;Y ) = DKL(p(x, y)‖p(x)p(y)) ,

where DKL denotes the Kullback-Leibler divergence. On the other hand:

SD(X|Y ) =
1

2

∑
x,y

|p(x, y)− p(x)p(y)| = ∆SD(p(x, y); p(x)p(y)) ,

therefore Pinsker’s inequality yields the left part of the result.

To prove the right inequality, we observe that the function ϕ : x 7→ ex − 1 is
convex and is such that x ≤ ϕ(x),∀x ∈ R. Therefore by Jensen’s inequality:

MI(X;Y ) ≤ eMI(X;Y ) − 1 = ϕ(EX,Y [pmi]) ≤ EX,Y [ϕ(pmi)] = EX,Y [PMI] .

We can upper bound EX,Y [PMI] as follows:

EX,Y [PMI] =
∑
x,y

p(x, y) PMI(x, y)

=
∑
x,y

p(x)p(y)(PMI(x, y) + 1) PMI(x, y)

= EY EX [PMI] + EY EX [PMI2]

= EY EX [PMI2]

≤ max
x,y

[|PMI |] · EY EX [|PMI |]

= 2RE(X|Y ) · SD(X|Y ) ,

which concludes the proof. ut

B Proof of Lemma 2

Proof. Let y be a arbitrary element of Y such that P[f(X) = y] > 0. For any
x ∈ X , let δx,y = PMIX,f(X)(x, y) and δ′x,y = PMIX′,f(X′)(x, y). By definition:

P[X = x, f(X) = y]

P[X = x] · P[f(X) = y]
=

P[f(x) = y]

P[f(X) = y]
= 1 + δx,y .
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We then have:

1 + δ′x,y =
P[f(x) = y]

P[f(X ′) = y]

=
P[f(X) = y] · (1 + δx,y)∑
x̄ P[X ′ = x̄] · P[f(x̄) = y]

=
P[f(X) = y] · (1 + δx,y)∑

x̄ P[X ′ = x̄] · P[f(X) = y] · (1 + δx̄,y)

=
1 + δx,y∑

x̄ P[X ′ = x̄] · (1 + δx̄,y)
. (7)

We now prove Item 1 by bounding maxx,y |δ′x,y|. Suppose that f is δRE-RE-
noisy for X, or equivalently maxx,y |δx,y| ≤ δRE. In (7), the denominator is a
weighted mean of the (1 + δx̄,y)’s, and therefore lies in the interval [1− δRE, 1 +
δRE]. The same bounds apply to the numerator, which concludes the proof for
Item 1.

We now prove Item 2. By reordering terms, (7) is equivalent to:

δ′x,y

(
1 +

∑
x̄

P[X ′ = x̄] · δx̄,y

)
= δx,y −

(∑
x̄

P[X ′ = x̄] · δx̄,y

)
. (8)

We notice that |
∑
x̄ P[X ′ = x̄] · δx̄,y| depends only of y and is upper bounded by

maxx |δx,y|. Thus, taking the max over x, then lower (resp. upper) bounding the
left (resp. right) member of (8) yields:

max
x
|δ′x,y| ·

(
1−max

x
|δx,y|

)
≤ 2 ·max

x
|δx,y| .

Since X and X ′ are independent, maxx |δx,y| and maxx
∣∣δ′x,y∣∣ are independent

as well. Taking the expected value over Y of the previous equation and using
the multiplicativity (for independent random variables) and additivity of the
expected value, we have:

EY
[
max
x
|δ′x,y|

]
· (1−ARE(X|f(X))) ≤ 2 ·ARE(X|f(X)) . (9)

We also have the following bound on P[Y ′ = y]:

P[Y ′ = y] =
∑
x∈X

P[X ′ = x] · P[f(x) = y]

∈
∑
x∈X

P[X ′ = x] · (P[Y = y] · [1− δRE, 1 + δRE])

∈ [1− δRE, 1 + δRE] · P[Y = y], (10)

Item 2 follows by combining (9) and (10).
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C Proof of Lemma 3

Let Y = f(X). By assumption f is δ-ARE-noisy, so ARE(X|Y ) ≤ δ. Let
π(y) := minx∈X P[Y = y|X = x]. Then, we claim that:∣∣∣∣∣∣1−

∑
y∈Y

π(y)

∣∣∣∣∣∣ ≤ δ . (11)

Indeed, by definition we have:

ARE(X|Y ) =
∑
y∈Y

(
max
x∈X
|PMI|

)
· P[Y = y]

=
∑
y∈Y

(
max
x∈X

∣∣∣∣1− P[Y = y|X = x]

P[Y = y]

∣∣∣∣) · P[Y = y]

=
∑
y∈Y

(
max
x∈X
|P[Y = y]− P[Y = y|X = x]|

)

=
∑
y∈Y

(∣∣∣∣P[Y = y]−min
x∈X

P[Y = y|X = x]

∣∣∣∣)

≥

∣∣∣∣∣∣
∑
y∈Y

(
P[Y = y]−min

x∈X
P[Y = y|X = x]

)∣∣∣∣∣∣ =

∣∣∣∣∣∣1−
∑
y∈Y

π(y)

∣∣∣∣∣∣ ,

which proves (11).
It remains to construct the function f⊥. We define it as follows: for every

y ∈ Y and every x ∈ X ∪ {⊥}, we let:

P[f⊥(x) = y] =

{
(P[f(x) = y]− π(y)) /δ if x 6=⊥
π(y)/(1− δ) otherwise

.

The above distribution is such that for all x, y:

P[f⊥(idδ(x)) = y] = P[idδ(x) = x] · P[f⊥(x) = y] + P[idδ(x) =⊥] · P[f⊥(⊥) = y]

= δ · (P[f(x) = y]− π(y)) /δ + (1− δ) · π(y)/(1− δ)
= P[f(x) = y]− π(y) + π(y)

= P[f(x) = y] ,

and Lemma 3 follows.
It only remains to prove that f⊥ is efficiently computable if f is poly-time

noisy, which is done by proving that the following algorithm Alg1 (resp. Alg2) for
sampling f⊥(x) for x 6=⊥ (resp. x =⊥). The algorithm simply samples y from
f(x) (resp. from f(x0) for an arbitrary fixed x0). Then, it restarts with proba-
bility π(y)/P[Y = y] (resp. with probability 1−π(y)/P[f(x0) = y]), otherwise it
ends with output y. This rationale is similar to the proof in [DDF14]. ut



34

D A tailcut bound for the Gaussian distribution

Proposition 5. Let k, ε ≥ 1 such that k ≥ max(1,
√
−2 log(ε

√
2π)). Then:

1

σ
√

2π

∫ ∞
kσ

exp

(
− (x− t)2

2σ2

)
dt ≤ ε .

Proof. We have

1

σ
√

2π

∫ ∞
kσ

exp

(
− (x− t)2

2σ2

)
dt ≤ e−k

2/2

k
√

2π
≤ e−k

2/2

√
2π
≤ ε .

The first inequality is a well-known tail bound, the second one follows from

k ≥ 1, the last one follows from k ≥
√
−2 log(ε

√
2π).

E Proof of Proposition 3

Reprising the notations of Section 4, we consider X to be a uniformly ran-
dom variable over J0, N − 1K, where N = 2n is a power of two. We con-
sider a leakage function of the form “Hamming weight + Gaussian noise”:
f(X) = N (HW(X), σ). We note Y = f(X) and Yk = f(X)|(HW(X) = k)
the leakage and conditional leakage random variables, respectively.

When computing the noisiness metrics, we will always assume that n = o(σ)
and that the realization y of the leakage is O(τ ·σ) for some tailcut rate τ ∈ [1;σ]:
the conditions on n and τ are necessary for the asymptotic (and interesting for
us) regime to kick in, and the condition on y can be made to happen with
overwhelming probability. In practice, τ may effectively be treated as a constant
(for example, τ ≤ 19 as long as λ ≤ 256).

E.1 Bounding the PMI

We start by bounding the PMI of X and Y . This will allow in turn to bound
SD, ARE, RE and EN.

Proposition 6. Let (n, k, σ, y) ∈ N × N × [1; +∞) × R, such that 0 ≤ k ≤ n,
n = o(σ) and y ∈ [−τ · σ, n + τ · σ] for some tailcut parameter τ ∈ [1;σ]. Let
X,Y be defined as stated above. For any x ∈ J0, 2n − 1K of Hamming weight k,
and any j0 ∈ J0, nK, it holds that:

PMI(x, y) =
(
k − n

2

) y − j0
σ2

+O

(
n2τ2

σ2

)
.

We notice that the conclusion of Proposition 6 can be parameterized by some
value j0. This peculiar property is highly convenient as it will allow us to easily
adapt Proposition 6 to a variety of different situations.
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Proof. We have:

P[Yk = y] =
1

σ
√

2π
· exp

(
− (y − k)2

2σ2

)
, (12)

as well as

P[Y = y] =
∑
j

P[HW(X) = j] · P[Yj = y]

=
2−n

σ
√

2π

n∑
j=0

(
n

j

)
· exp

(
− (y − j)2

2σ2

)
. (13)

From (12) and (13), it follows that

PMI(x, y) =
2n

F (n, k, σ, y)
− 1 , (14)

where:

F (n, k, σ, y) =

n∑
j=0

(
n

j

)
exp

(
− 1

2σ2

[
2(y − k)(k − j) + (j − k)2

])

=

n∑
j=0

(
n

j

)
exp

(
− 1

2σ2

[
2(y − k)(k − j) + (j − k)2

])

=

n∑
j=0

(
n

j

)
exp

(
(y − k)(j − k)

σ2

)
exp

(
− (j − k)2

2σ2

)

We now note t = t(j) = j−k
σ2 and rewrite F (n, k, σ, y) accordingly:

F (n, k, σ, y) =

n∑
j=0

(
n

j

)
· exp ((y − k)t) · exp

(
−σ

2t2

2

)
(15)

We note that exp
(
−σ

2t2

2

)
= 1 − σ2t2

2 + O(σ4t4) and that σ4t4 ≤ (n/σ)4. We

now inject this Taylor expansion into (15):

F (n, k, σ, y) = G(n, k, σ, y) ·
(
1 +O

(
(n/σ)4

))
(16)

− σ2

2

n∑
j=0

(
n

j

)
· t2 · exp ((y − k)t) (17)

where G(n, k, σ, y) =
∑n
j=0

(
n
j

)
· exp ((y − k)t). As a special case of the binomial

theorem, we have:

G(n, k, σ, y) =
1

zk
(1 + z)

n
, with z = exp

(
y − k
σ2

)
. (18)
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Now, in order to bound F (n, k, σ, y) there only remains to bound the term in
line 17. We notice that this term is exactly

− σ2

2
· ∂

2

∂y2
G(n, k, σ, y) . (19)

We note that we have:

∂

∂y
G(n, k, σ, y) =

(
nz

σ2(1 + z)
− k

σ2

)
·G(n, k, σ, y) ,

∂2

∂y2
G(n, k, σ, y) =

[(
nz

σ2(1 + z)
− k

σ2

)2

+
nz

σ4(1 + z)2

]
·G(n, k, σ, y) . (20)

Combining (16), (17), (18), (19), and (20) yields this approximation of F (n, k, σ, y):

F (n, k, σ, y) =
(1 + z)n

zk
·

[
1− 1

2

(
nz

σ(1 + z)
− k

σ

)2

− nz

2σ2(1 + z)2
+O

(
(n/σ)4

)]
.

Let u = y−k
σ2 , so that z = eu. Given the hypotheses, u = O(τ/σ). Using a

Taylor expansion, we have:

(1 + z)n

zk
= 2n ·

(
1 +

(n
2
− k
)
u+O(n2u2)

)
,(

nz

σ(1 + z)
− k

σ

)2

=
1

σ2

(n
2
− k
)2

+O

(
n2u

σ2

)
,

nz

2σ2(1 + z)2
=

n

4σ2
+O

(
nu2

σ2

)
.

Given the hypotheses, we have n2u2 = O
(
n2τ2

σ2

)
(and similarly for 1

σ2

(
n
2 − k

)2
,

n2u
σ2 , n

4σ2 and nu2

σ2 ), so that we can simplify the expression of F (n, k, σ, y):

F (n, k, σ, y) = 2n ·
(

1 +
(n

2
− k
)
u+O

(
n2τ2

σ2

))
.

Injecting this last result in (14) yields:

PMI(x, y) =
(
k − n

2

) y − k
σ2

+O

(
n2τ2

σ2

)
. (21)

Finally, we notice that
(
k − n

2

)
k−j0
σ2 = O

(
n2τ2

σ2

)
, so the expression of the PMI

will remain valid if we add this term to it. We do so, which gives the final result.
ut
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E.2 Probabilities Facts

Before moving on to bounding the noisiness metrics, we recall the following facts,
which will useful in the proofs.

Proposition 7. Let Y ∼ N (0, σ) follow a Gaussian distribution of mean 0 and
standard deviation σ. The following identity gives the mean absolute deviation
(or MAD) of Y , and can be found in e.g. [Win12]:

EY [|Y |] =
1

σ
√

2π

∫ ∞
−∞

exp

(
− y2

2σ2

)
· |y| dy = σ

√
2

π
. (22)

Now, let Z ∼ B(n, 1/2) follow a binomial distribution of parameters n and 1/2.
A closed-form expression for the MAD of Z is known since at least De Moivre
(see [DZ91]):

EZ [|Z − n/2|] =
bn/2c+ 1

2n
·
(

n

bn/2c+ 1

)
.

Using Stirling’s formula on
(

n
bn/2c+1

)
, followed by Taylor expansions, yields the

following asymptotic formula for the MAD of Z:

E[|Z − n/2|] =

√
n

2π
+O

(
1

n5/2

)
. (23)

In addition, the variance of Z is:

EZ
[
|Z − n/2|2

]
= p/4 . (24)

Finally, we recall that the MAD is invariant by translation of the underlying
distribution.

E.3 Bounding the RE-noisiness

We start by providing an asymptotic expression for the RE-noisiness.

Proposition 8. In addition to the notations previously set in this section, we
denote λ the targeted security level and suppose that λ = O((σ/n)2). We have:

RE(X|Y ) =
nτ

2σ
+O

(
n2τ2

σ2

)
. (25)

Proof. From the tailcut bound given in Proposition 5, we know that y will be in
[−τ · σ;n+ τ · σ] with overwhelming (precisely, ≥ 1− 2−λ) probability for some
τ = O(

√
λ), so we can without loss of generality assume that this is the case.

The PMI is maximized for (for example) x = 0 and y = n+ τ · σ, and the result
then follows from applying Proposition 6 (with j0 = 0). ut
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E.4 Bounding the ARE-noisiness

We now provide an asymptotic expression for the ARE-noisiness.

Proposition 9. With the notations previously set in this section, we have:

ARE(X|Y ) =
n

σ
√

2π
+O

(
n2τ2

σ2

)
. (26)

Proof. We have:

ARE(X|Y )

=EY
[
max
x
|PMI |

]
=

∫ ∞
−∞

P[Y = y] ·max
x
|PMI | dy

=2−n
n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] ·max
x
|PMI | dy (27)

=2−n
n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] ·max
x

∣∣∣∣(HW(x)− n

2

) y − j
σ2

+O

(
n2τ2

σ2

)∣∣∣∣ dy
(28)

=
n

2σ2
2−n

n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] · |y − j| dy +O

(
n2τ2

σ2

)
(29)

=
n

2σ2
2−n

n∑
j=0

(
n

j

)
· σ
√

2

π
+O

(
n2τ2

σ2

)
(30)

=
n

σ
√

2π
+O

(
n2τ2

σ2

)
. (31)

Hereabove, (27) uses the identity P[Y = y] = 2−n
∑n
j=0

(
n
j

)
· P[Yj = y]. Then,

(28) replaces the PMI with its aymptotic expression from Proposition 6 : a subtle
but important point is that when applying Proposition 6, we take j0 = j. Then
(29) takes x = 0 and rearranges a little bit the terms, in order to make appear the
MADs of (n+ 1) Gaussian distributions (of different means but same standard
deviation). Because the MAD is invariant by translation, we can directly apply
Proposition 7, (22) to compute each of these MADs, which gives (30). Finally,
(31) applies the binomial theorem and simplifies everything. The result follows.

ut

E.5 Bounding the SD-noisiness

We now provide an asymptotic expression for the SD-noisiness.
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Proposition 10. With the notations previously set in this section, we have:

SD(X|Y ) =

√
n

2πσ
+O

(
1

σn5/2
+
n2τ2

σ2

)
. (32)

Proof. Using the exact same techniques as in the proof of Proposition 9, one can
show, for a fixed x ∈ J0; 2n − 1K, that:

EY [|PMI |]

=

∫ ∞
−∞

P[Y = y] · |PMI | dy

=2−n
n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] · |PMI | dy

=2−n
n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] ·
∣∣∣∣(HW(x)− n

2

) y − j
σ2

+O

(
n2τ2

σ2

)∣∣∣∣ dy
=

∣∣HW(x)− n
2

∣∣
σ2

· 2−n
n∑
j=0

(
n

j

)∫ ∞
−∞

P[Yj = y] · |y − j| dy +O

(
n2τ2

σ2

)

=

∣∣HW(x)− n
2

∣∣
σ2

· σ
√

2

π
+O

(
n2τ2

σ2

)
=|k − n/2|

√
2

σ
√
π

+O

(
n2τ2

σ2

)
,

where k = HW(x). Injecting the last equation in the expression of 2 · SD(X|Y )
yields:

2 · SD(X|Y ) =EXEY [|PMI |]

=EX

[
|k − n/2|

√
2

σ
√
π

+O

(
n2τ2

σ2

)]
(33)

=

n∑
k=0

2−n
(
n

k

)[
|k − n/2|

√
2

σ
√
π

+O

(
n2τ2

σ2

)]

=

√
2

σ
√
π
EZ |Z − n/2|+O

(
n2τ2

σ2

)
, (34)

where Z = HW(X). Since X is uniform over J0; 2n − 1K, Z follows a binomial
distribution (Z ∼ B(n, 1/2)) and therefore (33) can be rewritten in terms of Z
instead of X, which we do in (34). Replacing EZ |Z − n/2| with its asymptotic
expression (given in Proposition 7, Then (23)) gives the result. ut

E.6 Bounding the EN-noisiness

We now provide an asymptotic expression for the EN-noisiness.
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Proposition 11. With the notations previously set in this section, we have:

EN(X|Y ) =
1

σ

√
n

2πN
+O

(
n2τ2

σ2N

)
. (35)

Proof. First, we compute EX [PMI2]. For any fixed j0 ∈ J0; 2n − 1K:

EX [PMI2]

=EX
[(

HW(X)− n

2

)2 (y − j0)2

σ4
+O

(
n4τ4

σ4

)]
=

(y − j0)2

σ4
EX

[(
HW(X)− n

2

)2
]

+O

(
n4τ4

σ4

)
=

(y − j0)2

σ4
· n

4
+O

(
n4τ4

σ4

)
,

Therefore
√
EX [PMI2] = |y−j0|

σ2 ·
√
n

2 + O
(
n2τ2

σ2

)
by the subadditivity of the

square root function. It follows that:

EY
[√

EX [PMI2]

]
=2−n

n∑
j=0

(
n

j

)
EYj

[√
EX [PMI2]

]

=2−n
√
n

2σ2

n∑
j=0

(
n

j

)
EYj
|y − j|+O

(
n2τ2

σ2

)

=
1

σ

√
n

2π
+O

(
n2τ2

σ2

)
The computation above uses the exact same tricks as for the proofs of Proposi-
tions 9 and 10. The result follows.

E.7 Source code for the simulations

def compute_noise(n, sigma , tau = 19):

"""

This function takes as input:

- a field size n

- a standard deviation sigma

- a tailcut rate tau (by default set to 19)

And computes the {RE ,ARE ,SD ,EN}-noisiness of the random

↪→ variables X and Y, where:
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- X is uniformly distributed in [0, ..., 2 ** n - 1]

(hence its Hamming weight HW(X) is in [0, ..., n])

- Y = f(X) is equal to HW(X) + a Gaussian of standard

↪→ deviation sigma

A warning is raised if the parameters set do not fall into

↪→ the asymptotic regime.

"""

# p_x is the probability that X = x, for x in [0, ..., 2 **

↪→ n - 1]

p_x = (2. ** (- n))

# p_hw(k) is the probability that HW(X) = k, for k in [0,

↪→ ..., n]

p_hw(k) = binomial(n, k) * (2. ** (- n))

# p_y_given_k(y, k) is the probability (density) of Y at

↪→ the point y,

# given that HW(X) = k

p_y_given_k(y, k) = exp(- (k - y) * (k - y) / (2. * sigma *

↪→ sigma)) / (float(sigma * sqrt (2. * pi)))

# p_y(y) is the probability (density) of Y at the point y

p_y(y) = sum(p_hw(k) * p_y_given_k(y, k) for k in range(n +

↪→ 1))

# Print the parameters

print ""

print "Parameters"

print "=========="

print "Size of the field : N = ", 2 ** n

print "Max. Hamming weight : n = ", n

print "Standard deviation : sigma = ", sigma

print "Tailcut rate : tau = ", tau

print ""

# Check if we are in the asymptotic regime

if (sigma < 5 * n):

print "Warning: you are not in the asymptotic regime for

↪→ RE , ARE , SD and EN."

print "Try setting (sigma > 5 * n)"

print ""

elif (sigma < 5 * n * tau):

print "Warning: you are not in the asymptotic regime for

↪→ RE"

print "(but you are for ARE , SD and EN)."

print "Try setting (sigma > 5 * n * tau) to be in that

↪→ asymptotic regime too."

print ""

# Compute the noise with the relative error RE

y0 = float(n + tau * sigma)
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k0 = n

RE = abs(p_y_given_k(y0, k0) / p_y(y0) - 1)

print "RE(X|Y) =", RE

# In the asymptotic regime , this should be equivalent to a

↪→ constant

print "RE(X|Y) * sigma / (tau * n) =", RE * sigma / (tau

↪→ * n)

print "1 / 2 =", 1. / 2

print ""

# Compute the noise with the average relative error ARE

k0 = 0

k1 = n

p_pmi_left(y) = abs(p_y_given_k(y, k0) - p_y(y))

p_pmi_right(y) = abs(p_y_given_k(y, k1) - p_y(y))

p_pmi(y) = max_symbolic(abs(p_y_given_k(y, k0) - p_y(y)),

↪→ abs(p_y_given_k(y, k1) - p_y(y)))

ARE = numerical_integral(p_pmi(y), - tau * sigma , n + tau *

↪→ sigma , params =[y])[0]

print "ARE(X|Y) =", ARE

# In the asymptotic regime , this should be equivalent to a

↪→ constant

print "ARE(X|Y) * sigma / n =", ARE * sigma / n

print "1 / sqrt(2 * pi) =", float(1 / sqrt(2

↪→ * pi))

print ""

# Compute the noise with the statistical distance SD

SD_integrand = p_x * sum(binomial(n, k) * abs(p_y(y) -

↪→ p_y_given_k(y, k)) for k in range(n + 1))

SD = 0.5 * numerical_integral(SD_integrand , - tau * sigma ,

↪→ n + tau * sigma , params =[y])[0]

print "SD(X|Y) =", SD

# In the asymptotic regime , this should be equivalent to a

↪→ constant

print "SD(X|Y) * sigma / sqrt(n) =", SD * sigma / sqrt

↪→ (1. * n)

print "1 / (2 * pi) =", float(1 / (2 * pi

↪→ ))

print ""

# Compute the noise with the Euclidean norm EN

EN_integrand = sqrt(sum(binomial(n, k) * ((p_y(y) -

↪→ p_y_given_k(y, k)) ** 2) for k in range(n + 1)))

EN = p_x * numerical_integral(EN_integrand , -tau * sigma , n

↪→ + tau * sigma , params =[y])[0]

print "EN(X|Y) =", EN

# In the asymptotic regime , this should be equivalent to a

↪→ constant
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print "EN(X|Y) * sigma * sqrt(N / n) =", EN * sigma * sqrt

↪→ (2 ** n) / sqrt (1. * n)

print "1 / sqrt(2 * pi) =", float(1 / sqrt(2

↪→ * pi))

print ""

F Proofs of Statements from Section 6

We use the following elementary observation at several places in the following
proofs.

Fact 1. Let m,M ∈ R+, I be a finite set and (ai)i∈I , (bi)i∈I be indexed sets of
non-negative numbers such that for any i ∈ I, m ≤ ai

bi
≤M . Then

m ≤
∑
i∈I ai∑
i∈I bi

≤M .

F.1 Proof of Proposition 4 (Basic Properties of RE-Noisy
Functions)

Proof. We prove each property separately:

1. Data processing inequality. Let X ′ = g(X), Y = f(X) and Y ′ = f(X ′).
For any (x, y) ∈ X × Y, we have:

P[Y ′ = y|X = x] =
∑
x′

P[g(x) = x′] · P[Y = y|X = x′]

=
∑
x′

P[g(x) = x′] · (1 + PMIX,Y (x, y)) · P[Y = y]

= P[Y = y] ·
∑
x′

P[g(x) = x′] · (1 + PMIX,Y (x, y))

∈ [1− δ; 1 + δ] · P[Y = y] .

Since P[Y ′ = y] = EX [P[Y ′ = y|X]], this also implies that

P[Y ′ = y] ∈ [1− δ; 1 + δ] · P[Y = y] .

Combining these two equations yields the result.
2. Conservation under projection. We first prove (2). Let Y be the support

of Y , and δ = RE((X1, X2)|Y ). By hypothesis, the following inequality holds
for any (x1, x2, y) ∈ X1 ×X2 × Y:

1− δ ≤ P[X1 = x1, X2 = x2|Y = y]

P[X1 = x1, X2 = x2]
≤ 1 + δ .
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By fact 1, this implies that for any x1, y:

1− δ ≤
∑
x2

P[X1 = x1, X2 = x2|Y = y]∑
x2

P[X1 = x1, X2 = x2]

def.
=

P[X1 = x1|Y = y]

P[X1 = x1]
≤ 1 + δ .

Taking the minimum and maximum of P[X1=x1|Y=y]
P[X1=x1] over all the possible

values of x1, y concludes the proof.

We now prove (3). We notice that we only need to prove that RE((X1, X2)|f(X2)) ≤
RE(X2|f(X2)), since equation 2 gives the other direction. Since X1 and X2

are independent, P[X1 = x1, X2 = x2] = P[X1 = x1] · P[X2 = x2] and
P[X1 = x1, X2 = x2|f(X2) = y] = P[X1 = x1] · P[X2 = x2|f(X2) = y]. The
result then follows from the definition of the relative error.

ut

F.2 Proof of Lemma 6 (Indistinguishability Amplification)

In this section, we prove the lemma 6. The idea is to see the sum of the Zi’s as
the result of a random walk, and to compute its convergence towards the uniform
distribution by bounding the infinity norm of stochastic matrices related to this
walk.

Proof. We suppose that for each i ∈ J1; dK, ∆RE(Zi;Z) is finite (otherwise, the
result is trivially true) and denote it by δi. Therefore, for each i and each z ∈ F,
there exists a δi,z ∈ [−δi, δi] such that P[Zi = z] = P[Z = z] ·(1+δi,z). We notice
that, by the law of total probability, the equality

∑
z∈F δi,z = 0 holds for each i.

In addition, for each k ≥ 0 we denote by Vk the random sum Z1 + · · ·+ Zk,
and by vk = (vk,z)z∈F its probability vector, that is, vk,z = P[Vk = z]. For k > 0,
we also note Mk the stochastic matrix associated to the transition vk−1 → vk,
and note mk,z the row of index z of the matrix Mk. Finally, we note u = (1/|F|)z
the probability vector of Z, and v′k = vk − u.

We notice that for each k > 0, the row vector mk,0 is equal to
(

1+δk,z

|F|

)
z∈F

:

this stems from the fact that

P [Vk = z|Vk−1 = 0] = P[Zk = z] =
1 + δk,z
|F|

.

In addition, we notice that for any fixed z0 ∈ F, the map z ∈ F 7→ z0 + z is
simply a permutation, therefore the probability vector of the random variable
z0 + Zk is a permutation of the probability vector of the random variable Zk.
Equivalently, each row of Mk is a permutation of mk,0.

We now bound ‖Mk − 1
|F|J‖∞, where J denotes the ones matrix: it is well-

known that for any matrix A = (ai,j)i,j , ‖A‖∞ = maxi(
∑
j |ai,j |). In the case

of Mk, each row is a permutation of the first one, therefore∥∥∥∥Mk −
1

|F|
J

∥∥∥∥
∞

= ‖Mk,0 − u‖1 ≤ δk . (36)
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Finally, we show by induction that ‖v′k‖∞ ≤ 1
|F|
∏
i≤k δi; since we have

∆RE(Vk;Z) = |F| · ‖v′k‖∞, taking k = d will allow to conclude the proof. The
result holds for k = 1, and for k > 1 we have:

v′k = vk−1Mk − u

= vk−1
1

|F|
J︸ ︷︷ ︸

=u

+vk−1

(
Mk −

1

|F|
J

)
− u

= v′k−1

(
Mk −

1

|F|
J

)
+ u

(
Mk −

1

|F|
J

)
︸ ︷︷ ︸

=0

The equations above use the fact that for any probability vector v, vJ = |F|u,
and that for any k, uMk = u. We therefore have:

‖v′k‖∞ ≤ ‖v′k−1‖∞
∥∥∥∥Mk −

1

|F|
J

∥∥∥∥
∞

. (37)

Combining the induction hypothesis with the equations 36 and 37 gives the
expected bound on ‖v′k‖∞, which concludes the proof. ut

F.3 Proofs of Theorem 3

Since X is uniform, all the random variables Xi’s are independent and uniform,
so the random variables Xi|fi(Xi) are independent too. Therefore, we can apply
the indistinguishability amplification lemma (lemma 6). Let y = (yi)i denote an
arbitrary realization of the leakage vector (fi(Xi))i, then:

RE(X|f0(X0), . . . , fd(Xd)) = max
y

∆RE(X|f0(X0) = y0, . . . , fd(Xd) = yd;X)

= max
y

∆RE

(
(
∑
i

Xi)|f0(X0) = y0, . . . , fd(Xd) = yd;X

)

= max
y

∆RE

(∑
i

(Xi|fi(Xi) = yi);X

)
≤
∏
i

max
yi

∆RE(Xi|fi(Xi) = yi;Xi)

≤
∏
i

RE(Xi|fi(Xi))

≤ δd+1 ,

which concludes the proof. ut

F.4 Proofs of the Corollary 2

Using the notations of theorem 3, we denote by f the randomized function which
maps X to (f0(X0), . . . , fd(Xd)). Theorem 3 states that f is (δd+1)-RE-noisy.
From there, proposition 4 (item 1) allows to conclude. ut
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F.5 Proof of the Theorem 4

We first need a preliminary lemma.

Lemma 7. Let X be a uniform random variable over a finite set X . Let δ1, δ2 ≥
0. And let L1, L2 be two random variables such that RE(X|Li) ≤ δi for i ∈ {1, 2},
and (L1|X = x) and (L2|X = x) are mutually independent for every x ∈ X . We
have:

RE(X|(L1, L2)) ≤ δ1 + δ2 + 2δ1δ2
1− δ1δ2

.

Proof. We use the same notations as in the full version of [PR13]: let (`1, `2) ∈
Im(L1)× Im(L2), and p12(x) = P[X = x|(L1, L2) = (`1, `2)]. In addition, let

θ12 =
P[L1 = `1] · P[L2 = `2]

P[(L1, L2) = (`1, `2)]
.

Using Bayes equality and the mutual independence of the (Li|X)’s, we have:

p12(x) = θ12
P[X = x|L1 = `1]P[X = x|L2 = `2]

P[X = x]
. (38)

We note δ
(i)
x = P[X=x|Li=`i]−P[X=x]

P[X=x] and notice that for any i,
∑
x δ

(i)
x = 0.

Summing p12(x) over all the values of x ∈ X yields:

1

θ12
= 1 +

1

N

∑
x∈X

δ(1)
x δ(2)

x . (39)

By hypothesis, |δ(i)
x | ≤ δi for each x, therefore∣∣∣∣ 1

θ12
− 1

∣∣∣∣ ≤ δ1δ2 . (40)

Combining equations 38 and 40 yields:

(1− δ1)(1− δ2)

1 + δ1δ2
≤ p12(x)

P[X = x]
≤ (1 + δ1)(1 + δ2)

1− δ1δ2
, (41)

which concludes the proof. ut

We now prove Theorem 4.

Proof. We first prove the first result. Let L = (L1, . . . , Lt), ` = (`1, . . . , `t) and
p(`|x) = P[L = `|X = x]. It holds that:

P[L = `|X = x]

P[L = `]
=

p(`|x)∑
x′∈X P[X = x′] · p(`|x′)

=

∑
x′∈X P[X = x′] · p(`|x)∑
x′∈X P[X = x′] · p(`|x′)

. (42)
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We now observe that

p(`|x)

p(`|x′)
=
∏
i

P[Li = `i|X = x]

P[Li = `i|X = x′]

=
∏
i

(
P[Li = `i|X = x]

P[Li = `i]
· P[Li = `i]

P[Li = `i|X = x′]

)

∈

[(
1− δ
1 + δ

)t
;

(
1 + δ

1− δ

)t]
. (43)

Combining the equations 42, 43 and the fact 1 yields the first result.

We now show the second result by induction. We denote by δt the bias
RE(X|L1, . . . , Lt) = RE(L1, . . . , Lt|X). The result is true for t = 1, and if
it holds for any i ≤ t, then by lemma 7:

δt+1 ≤
δ + δt + 2δδt

1− δδt
≤
δ + tδ

1−(t−1)δ + 2δ tδ
1−(t−1)δ

1− δ tδ
1−(t−1)δ

=
(t+ 1)δ

1− tδ
.

ut

F.6 Proof of Theorem 5

Let T = (T0, T1, . . . , Td). By hypothesis, RE ((Xi−1, Xi)|fi(Xi−1, Xi)) for every
i. By virtue of the preservation under lifting (proposition 1, equation 3), this
implies:

RE(T|fi(Xi−1, Xi)) ≤ δ .

Since the random variables (fi(Xi−1, Xi)|T = t)i are mutually independent, we
can apply Theorem 4, followed by the preservation under projection (Proposi-
tion 4, (2)), which concludes the proof. ut

F.7 Proofs of Theorem 6

We first need a preliminary lemma.

Lemma 8. Let A,B be two independent random variables over a finite set X .
Let f : X × X → Y be δ-RE-noisy for (A,B). For every a, b ∈ X , we have:

RE(A|f(A, b)) ≤ δ and RE(B|f(a,B)) ≤ δ .

Proof. We only prove the first bound, the second one then follows by symmetry.
Let L = f(A,B). We have:

P[A = a|B = b, L = `]

P[A = a]
=

P[A = a,B = b|L = `] · P[B = b]−1

P[A = a]

=
P[A = a,B = b|L = `]

P[A = a,B = b]
.

Taking the minimum and maximum over a yields the result. ut
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We now prove Theorem 6.

Proof. Our proof is both inspired by the original proof in [PR13, full version]
and significantly simpler. We pose the following notations:

– B is the random variable vector (Bj)0≤j≤d, and b = (bj)j is an arbitrary
realization of B;

– L is the random variable matrix (fi,j(Ai, Bj))0≤i,j≤d, and ` = (`i,j)i,j is an
arbitrary realization of L;

– δa|` = P[A = a|L = `]− 1
N ;

– δb|a,` = P[B = b|A = a,L = `]− 1
N ;

– δa,b|` = P[A = a,B = b, |L = `]− 1
N2 ;

By definition of the conditional probability, we have

δa,b|` =

(
1

N
+ δa|`

)(
1

N
+ δb|a,`

)
− 1

N2
=

1

N
δa|` +

1

N
δb|a,` + δa|`δb|a,` , (44)

Hence by taking the maximum of the previous equation over a, b, ` we obtain:

RE((A,B)|L) ≤ RE(A|L) + RE(B|(A,L)) + RE(A|L) ·RE(B|(A,L)) . (45)

From this equation, it is clear that upper bounding RE(A|L) and RE(B|(A,L))
implies upper bounding RE((A,B)|L), which in turn allows to conclude the
proof. The rest of the proof is dedicated to establishing these bounds.

First, we bound RE(A|L). By Lemma 8, it holds that:

∀(i, j, bj),RE(Ai|fi,j(Ai, bj)) ≤ RE((Ai, Bj)|fi,j(Ai, Bj)) ≤ δ . (46)

Since the leakage functions fi,j ’s are mutually independent, we can apply The-
orem 4, which combined with equation 46 yields:

∀i,RE(Ai|(fi,j(Ai, bj))0≤j≤d) ≤
(d+ 1)δ

1− dδ
. (47)

We subsequently apply the indistinguishability amplification lemma for the rel-
ative error (Lemma 6):

RE(A|(b,L)) = RE

(∑
i

Ai

∣∣∣∣∣ (fi,j(Ai, bj))0≤i,j≤d

)
≤
∏
i

RE (Ai|(fi,j(Ai, bj))0≤j≤d)

≤
(

(d+ 1)δ

1− dδ

)d+1

(48)

Finally, we observe that:

P[A = a|L = `] =
∑
b

P[B = b] · P[A = a|(B = b,L = `)] , (49)
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i.e. P[A = a|L = `] is the (weighted) average of all the P[A = a|(B = b,L = `)]’s.
Combined with fact 1, this implies that RE(A|L) is upper bounded by the
maximum (over all the possible b’s) of RE(A|(b,L)). Therefore, by equation 48:

RE(A|L) ≤
(

(d+ 1)δ

1− dδ

)d+1

. (50)

We get the same upper bound for RE(B|(A,L)) using the same techniques:

RE(B|(A,L)) ≤
(

(d+ 1)δ

1− dδ

)d+1

. (51)

We notice that since δ ≤ 1
2d+1 , it holds that RE(A|L) ≤ 1. Combining this fact

with the equations 45, 50 and 51 concludes the proof. ut

F.8 Proofs of Corollary 4

Let X ′ be a random variable uniformly distributed over X and independent of X,
and X = (X,X ′). Let f be the function which maps X to (fi,j(Xi, X

′
j))0≤i,j≤d,

where (X ′i)i denotes an encoding of X ′. Theorem 6 states that f is δ′-RE-noisy

for (X,X ′) with δ′ = 3
(

(d+1)δ
1−dδ

)d+1

, i.e.:

RE((X,X ′)|f(X,X ′)) ≤ δ′ . (52)

Let ϕ : X 2 → X 2 be defined by ϕ(x, x′) = (g(x), h(x)). By virtue of combining
(52) with proposition 4 (item 1):

RE((X,X ′)|f ◦ ϕ(X,X ′)) = RE((X,X ′)|f(g(X), h(X))) ≤ 2δ′

1− δ′
.

Finally, by proposition 4 (item 2), this implies RE(X|f(g(X), h(X))) ≤ 2δ′

1−δ′ ,
which concludes the proof. ut
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